Programming in C & DataStructures

Module 4
Structures And File Management

4.1 Introduction
> Derived data type : int,float,char,double, are the primitive data types .
» Using these primitive data types we can derive other data types and such data types
derived from basic types are called derived data types.
4.2 Type definition
> Typedef is a keyword that allows the programmer to create new data type name for an
already existing datatype.
» Syntax:
typedef old datatype newdatype ;

Example: typedef int MARKS;
typedef float AMOUNT;

Example:
» Program to compute simple interest using typedef definition

#include<stdio.h>

typedef float AMOUNT;

typedef float TIME;

typedef float RATE;

void main()

{
AMOUNT p,si;
TIME t;
RATE r;
printf(“enter the value of p,t,r\n”);
scanf(“%t% %, &p,&t,&r);
si=(p*t*r)/100;
printf(“si=%1f\n”,si);

}

Advantages of typede:

1.Provide a meaningful way of declaring variable

2.Increases readability of program

3.A complex and lengthy declaration can be reduced to short and meaningful declaration
4.Helps the programmer to understand source code easily.

Dept of CSE,SVIT Page 1

Programming in C & DataStructures

4.3 Structures

» Definition: A structure is defined as a collection of variables of same data type or
dissimilar datatype grouped together under a single name.

Syntax Example
struct tagname struct student
{ {
datatype memberl; char name[10];
datatype member2; int usn;
datatype member3; float marks;
} h
where

struct is a keyword which informs the compiler that a structure is being defined

tagname: name of the structure

memberl,member2: members of structure:

typel,type 2: int,float,char,double

4.3.1 Structure Declaration

As variables are declared ,structure are also declared before they are used:

Three ways of declaring structure are:

» Tagged structure
» Structure without tag

> Type defined structures
1.Tagged structure
syntax Example
struct tag_name struct student
{ {
data type memberl; char name[20];
data type member2; int usn;
-------------------- float marks;
-------------------- };
I
Declaration of structure variables
struct tagname v1,v2,v3...vn; struct student s1,52,s3;
Dept of CSE,SVIT Page 2

Programming in C & DataStructures

2.structure without tagname

syntax Example

struct struct

{ {
data type memberl; char name[20];
datatype member2; int usn;

; float marks;
-------------------- }s1,s2;

i,v2,v3;

3.Type defined structure

syntax Example

typedef struct typedef struct

{ {

data type memberl;
datatype member2;

}TYPE_ID;

char name[20];

int usn;

float marks;
}STUDENT;

Declaring structure variables

TYPE ID v1,v2,v3...vn;

STUDENT s1,s2,53;

Memory Allocation for structure variable s1:

<name(10 bytes) o Ysn(2 ytes), marks (4 byjes)

memory allocated for a structure variable sl=memory allotted for name+usn+marks
10+2+4
16 bytes.

4.3.2 Structure initialization
Syntax:
struct tagname variable={v1,v2....vn};

Dept of CSE,SVIT Page 3

Programming in C & DataStructures

example
struct student s1={“sony”,123,24};

>

>

4.4 Accessing structures

The members of a structure can be accessed by specifying the variable followed by dot
operator followed by the name of the member.

For example,

consider the structure definition and initialization along with

memory representation as shown below:

struct student

{
char name[20];
int usn;
float marks;

}si;
struct student s1 = {"aditi",002,40};

By specifying

Variblename . membername
Example

Sl.name

Sl.usn

S1.marks

4.5 Structure operations

1. Copying of structure variables
2. Arithmetic operations on structures
3. Comparision of two structures

1. Copying of structure variables

» copying of two structure variables is achieved using assignment operator.

» Consider two structure definition of student and emplpoyee

I

struct student

char name[20];
int usn;
float marks;

struct employee

{
char ename[20];
int eid;
float salary;

h

Dept of CSE,SVIT

Page 4

Programming in C & DataStructures

struct student s1,s2,s3; struct employee el,e2,e3;

s1=s2; //valid
s2=s1; //valid

sl=el;/linvalid

2. Arithmetic operations on structures
» Any arithmetic operation can be performed on the members of a structure Example
» Sl.marks++;
»> S2.marks++;

3. Comparision of two structures

» variables of same structure definition can be compared along with member.
» Sl.usn!=s2.usn;

» Sl.marks==s2.marks

» Sl.name==s2.name

4.6 Pointers to structure
» A variable which contains address of a structure variable is called pointer to a structure.

typedef struct
{ Structure definition
char name[20];
int usn;
float marks;
} STUDENT;
STUDENT s1,52,s3; I/ structure variables
STUDENT _*p; // pointer declaration
P=&sl,; /I assign the address of structure s1 to pointer
variable p

Access the members of structures using pointers
There are two methods:

1. Dereferencing operator (*)

2. Selection operator (—)

1. Dereferencing operator (*)
» If p is a pointer to structure student, members can be accessed as follows:
» (*p).name using this name can be accessed

Dept of CSE,SVIT Page 5

Programming in C & DataStructures

2.

» (*p).usn using this usn can be accessed
» (*p).marks using this marks can be accessed

Selection operator (—)

» If p is a pointer to structure student, members can be accessed as follows:
> p—name using this name can be accessed

» p—usn using this usn can be accessed

» p—marks using this marks can be accessed

4.7 Complex structures

1.
2.
3.
4. Array of structures

Nested structures
Structure containing arrays
Structure containing pointers

Nested structures
» A structure which includes another structure is called nested structure.

struct subject
{
int marks1; Structure definition with tagname
int marks1; ubject
int marks1;
b
typedef struct)
{
char name[20];
int usn; > /[Structure definition with typeid
struct _subject PCD; STUDENT
float avg; J
} STUDENT; /I include structure subject with a member
STUDENT s1; name PCD

» Structure student has member called PCD,which inturn is a structure .
Hence STUDENT structure is a nested structure.
» We can access various members as follows:

Sl.name;

S1.usn;

S1.PCD.marks1;

A\

Dept of CSE,SVIT Page 6

Programming in C & DataStructures

S1.PCD.marks2;
S1.PCD.marks3;
Sl.avg;

4.8 Array of structure

» As array of integers we can have array of structures
» Suppose we want to store information of 5 students consisting of name,usn,marks,structure
definition is as follows:

typedef struct

{
char name[20];
int usn;
float marks;

} STUDENT;

STUDENT s[5];

If n=3

>

We can access the first student information as follows:
S[0].name

S[0].usn

S[0].marks

We can access the second student information as follows
S[1].name

S[1].usn

S[1].marks

We can access the second student information as follows
S[2].name

S[2].usn

S[2].marks

hence i ranges from 0O till 2 if n=3

for(i=0;i<n;i++)

{

printf(*’enter the %d student details\n™,i+1);

printf(**enter the roll number:\n™);
scanf("'%d"",&s[i].rollno);
printf(*'enter the student name:\n"");
scanf("'%s",s[i].name);

Dept of CSE,SVIT Page 7

Programming in C & DataStructures

printf(**enter the marks:\n"");
scanf(*'%d",&s[i].marks);
printf(**enter the grade:\n"");
scanf(*'%s"" s[i].grade);

}

Example Programs:
1.Write a ¢ program to store information of n students with name,usn and marks.print the name
of the students whose marks is greater than 90.

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
struct student)

{

char name[20]; \ [Istructure definition for student
int usn;
float marks;

j

void main()

{ intin;
struct student s[10]; // array of structure declaration
printf("enter the number\n™);
scanf("%d",&n);

for(i=0; i<n; i++) N
{
printf(“enter the %d student details\n",i+1); enter details of n
students
printf(“enter the student name:\n"); >

scanf("%s",s[i].name);

printf(“enter the usn:\n");

scanf("%d",&s[i].usn); J
printf("enter the marks:\n");
scanf("%d",&s[i].marks);

¥

for(i=0;i<n;i++)
{
if(s[i].marks>90) /lcheck if the marks is greater than 90

Dept of CSE,SVIT Page 8

Programming in C & DataStructures

{ printf("\n marks of the student is %d \n",s[i].marks);
exit(0);
}
}
printf(student name NOT FOUND\n");

ky

2.Write a C program to maintain a record of n student details using an array of structures with
four fields (Roll number, Name, Marks, and Grade). Assume appropriate data type for each field.
Print the marks of the student, given the student name as input.

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

struct student
{ int rollno,marks;
char name[20];
char grade[2];
Y
void main()
{ intin;
struct student s[10];
char key[20];
clrscr();

printf("enter the number\n™);
scanf("%d",&n);
for(i=0;i<n;i++)
{
printf(“enter the %d student details\n",i+1);
printf("enter the roll number:\n");
scanf("%d",&s[i].rollno);
printf(“enter the student name:\n");
scanf("%s",&s[i].name);
printf("enter the marks:\n");
scanf("%d",&s[i].marks);
printf("enter the grade:\n");
scanf("%s",&s[i].grade);
}
printf(“enter the key student name:\n");
scanf(%s" key);
for(i=0;i<n;i++)

Dept of CSE,SVIT Page 9

Programming in C & DataStructures

{
if(strcmp(s[i].name, key)==0)
{ printf(*\n marks of the student is %d \n",s[i].marks);
exit(0);
}
}

printf(student name NOT FOUND\n");
}

4.9 Structure and functions
» The structure or structure members can be passed to functions in various ways as shown
below:
Various ways of passing structures to functions:
1. By passing individual members of a structure
2. By passing whole structure
3. By passing structure through pointers
1. By passing individual members of a structure to a function
» A function can be called by passing individual members of a structure as actual
parameters.
» Consider the below program which demonstrates the multiplication of fraction:

Program User defined function to multiply

#include<stdio.h> Continued....

typedef struct

{
int n;
intd;

}IFRACTION,;

void main()

{
FRACTION a,b,c;
printf(“enter fraction 17);

scanf(“%d%d”, &a.n, &a.d); int multiply(int x,int y)
printf(“enter fraction 2”); / {

scanf(“%d%d”, &b.n, &b.d); / return x*y;

/* function call with numeratorof a and b*/ }

c.n=multiply(a.n, b.n); <«

[*same as above function call with denominator
of a and b*/

Dept of CSE,SVIT Page 10

Programming in C & DataStructures

c.d=multiply(b.d, b.d);
printf(“fraction c is %d / %d”, c.n, c.d);

ky

Continued to next user defined function....

2. By passing whole structure

Program

User defined function to multiply

#include<stdio.h>
typedef struct
{
int n;
int d;
}IFRACTION;
void main()
{
FRACTION a,b,c;
printf(“enter fraction 17);
scanf(“%d %d”, &a.n, &a.d);
printf(“enter fraction 2”);
scanf(“%d %d”, &b.n, &b.d);
/* send together numerator
denominator of a and b*/
c=multiply(a, b); //func call
printf(“fraction c is %d / %d”, c.n, c.d);

and

ks

Continued....
FRACTION multiply(FRACTION X,
FRACTION vy)
{
FRACTION z;

z.num=x.n*y.n;
z.deno=x.d*y.de;
return;

3. By passing structure through pointers

Program

User defined function to multiply

#include<stdio.h>

typedef struct

{
int n;
int d;

}IFRACTION,;

void main()

{
FRACTION a,b,c;
printf(“enter fraction 1”);
scanf(“%d %d”, &a.n, &a.d);
printf(“enter fraction 2”);
scanf(“%d %d”, &b.n, &b.d);

Continued....

void multiply(FRACTION *x, FRACTION
*y, FRACTION *2)

{
Zz—N =X—n * y—n;
z—d = x—d * y—d;
return;

}

Dept of CSE,SVIT

Page 11

Programming in C & DataStructures

denominator of a and b*/

[* send together numerator and

multiply(&a , &b ,&c); //func call
printf(“fraction c is %d / %d”, c.n, c.d);

Uses of structure:

>

Y V V

A\

Structures are used to represent more complex data structure.

Related data items of dissimilar data types can be grouped under a common name.

Can be used to pass arguments so as to minimize the number of function arguments.
When more than one data has to be returned from the function, then structures can be
used.

Extensively used in applications involving database management.

Dept of CSE,SVIT Page 12

Programming in C & DataStructures

File Handling
4.10:Definitions
File: A file is defined as a collection of data stored on the secondary device such as hard
disk. FILE is type defined structure and it is defined in a header file “stdio.h”. FILE is a
derived data type.FILE is not a basic data type in C language.

Input File: An input file contains the same items that might have typed in from
the keyboard.

Output File: An output file contains the same information that might have been
sent to the screen as the output from the program.

Text(data) File:A text file is the one where data is stored as a stream of characters
that can be processed sequentially.

4.11 Steps to be perform file manipulations
1. Declare a file pointer variable
2. Open afile
3. Read the data from the file or write the data into file
4. Close the file

1.Declare a file pointer variable

> Like all the variables are declared before they are used, a file pointer variable
should be declared.

> File pointer is a variable which contains starting address of file.

» It can be declared using following syntax:

FILE *fp;
Example:

#include <stdio.h>
void main()
{
FILE *fp; I* Here, fp is a pointer to a structure FILE */

Dept of CSE,SVIT Page 13

Programming in C & DataStructures

2.File open Function

The file should be opened before reading a file or before writing into a file.

Syntax:

FILE *fp; Where,
........ fp is a feile pointer

fp = fopen(filename, mode) fopen() function to open file
mode is “r”,”w”,”a”

» fopen() function will return the starting address of opened file and it is stored in
file pointer.

> If file is not opened then fopen function returns NULL

if (fp == NULL)
{
printf(“Error in opening the file\n”);

exit(0);

Modes of File

The various mode in which a file can be opened/created are:

Mode Meaning
“r” opens a text file for reading. The file must exist.
“w” creates an text file for writing.

“a” Append to a text file.

1.Read Mode(“r”)

» This mode is used for opening an existing file to perform read operation.
» The various features of this mode are

e Used only for text file

o If the file does not exist, an error is returned

e The contents of the file are not lost

e The file pointer points to beginning of the file.

Dept of CSE,SVIT Page 14

Programming in C & DataStructures

File position after opening

v

File contents

EOF(End of File)

A

2.Write Mode(“w”)
» This mode is used to create a file for writing.
» The various features of this mode are
o If file does not exist, a new file is created.

o If afile already exists with the same name, the contents of the file are erased and
the file is considered as a new empty file.

e The file pointer points to the beginning of the file.

File position after opening

v

File contents

EOF(End of File)

3. Append Mode(“a”)

» This mode is used to insert the data at the end of the existing file.
» The various features of this mode are
e Used only for text file.

e If the file already exist, the file pointer points to end of the file.

Dept of CSE,SVIT Page 15

Programming in C & DataStructures

e |f the file is does not exist. A new file is created.

e EXxisting data cannot be modified.

File contents

EOF(End of File)

File position after opening

Examples

Read Mode

Write Mode

#include<stdio.h>

FILE *fp /I File Pointer
fp=fopen(“civil.txt”,’r”); //opening file civil in read
mode

if (fp == NULL) /ffile does not exist

{

printf(“Error in opening the file\n);//error message
exit(0); /lterminate the program

}

fclose(fp); // close the file civil.txt

#include<stdio.h>

FILE *fp /I File Pointer
fp=fopen(“ecb.txt”,”w”); //opening file ecb Iin write
mode

if (fp == NULL) //file does not exist

{

printf(“Error in opening the file\n”);//error message
exit(0); /lterminate the program

}

fclose(fp); // close the file ecb.txt

Append Mode

#include<stdio.h>

FILE *fp /I File Pointer

Dept of CSE,SVIT

Page 16

Programming in C & DataStructures

99 99,9

fp=fopen(“ecb.txt”,”a”); //opening file ecb in write mode

if (fp == NULL) //file does not exist

{

printf(“Error in opening the file\n”);//error message
exit(0); /lterminate the program

}

fclose(fp); // close the file ech.txt

3.Closing a file

» When we no longer need a file, that file should be closed.

» This is the last operation to be performed on a file.

» Afile can be closed using fclose() function.

» Ifafileis closed successfully, 0 is returned, otherwise EOF is returned.
Syntax:

fclose(file pointer);

Example:
fclose(fp);

4.12 1/O(Input and Output) file functions

The three types of 1/O functions to read from or write into the file
I. File I/O functions for fscanf() and fprintf()
Il. File I/O functions for strings fgets() and fputs()
I1l. File I/O functions for characters fgetc() and fputc()

File 1/O functions for fscanf() and fprintf()
1.fscanf():

The function fscanf is used to get data from the file and store it in memory.

Syntax:

fscanf(fp, “format string”, address list);
where,
“fp” is a file pointer.It points to a file from where data is read.

Dept of CSE,SVIT Page 17

Programming in C & DataStructures

“format String”: The data is read from file and is stored in variable s specified in the list ,will
take the values from the specified pointer fp by using the specification provided in format sting.
“address list”:address list of variables

Note:fsanf() returns number of items successfully read by fscanf function.

Example:

FILE *fp FILE *fp

fp=fopen(“name.txt”,’r”); fp=fopen(“marks.txt”,’r”);
fscanf(“fp,”%s”,name); fscanf(“fp,”%d%d%d”,&m1,&m?2,&m3);
Note:

1.1f the data is read from the keyboard then use stdin in place of fp
2.If the data is read from the file then use fp

2.fprintf(}:

The function fprintf is used to write data into the file.

Syntax:
fprintf(fp, “format string”, variable list);
where,
“fp” is a file pointer.It points to a file where data to be print.
“format String”: group of format specifiers.
“address list”:list of variables to be written into file

Note:fprinf() returns number of items successfully written by fprintf function.

Example:

FILE *fp FILE *fp
fp=fopen(“name.txt”,”w”); | fp=fopen(“marks.txt”,”w”);
fscanf(“fp,”%s”,name); fscanf(“fp,”%d%d%d”,m1,m2,m3);
Note:

1.1f the data has to be printer on output screen then use stdout in place of fp
2.1f the data has to be written to the file then use fp

Dept of CSE,SVIT Page 18

Programming in C & DataStructures

Example Program

Write a C program to read the contents of two files called as name.txt and usn.text and
merge the contents to another file called as output.txt and display the contents on console
using fscanf() and fprintf()

#include<stdio.h>
#include<stdlib.h>
void main()

{

FILE *fpl,*fp2,*fp3;

char name[20];

int usn;
fpl=fopen(“name.txt","r");
fp2=fopen("usn.txt","r");

fp3=fopen("output.txt","w");
for(;:)
{
if(fscanf(fpl,"%s",name)>0)
{
if(fscanf(fp2,"%d",&usn)>0)
{
fprintf(fp3,"%s %d\n",name,usn);
}
else break;
}
else break;
}
fclose(fpl);
fclose(fp2);
fclose(fp3);

fp3=fopen("output.txt","r");
printf("NAME\tUSN\n");
while(fscanf(fp3,"%s %d\n",name, &usn)>0)
{

printf("%s \t%d\n",name,usn);

}
fclose(fp3);

Dept of CSE,SVIT

Page 19

Programming in C & DataStructures

File 1/O functions for fgets() and fputs()
1.fgets()

fgets() is used to read a string from file and store in memory.

Syntax:
ptr=fgets(str,n,fp);
where

fp ->file pointer which points to the file to be read
str ->string variable where read string will be stored

n ->number of characters to be read from file

ptr->If the operation is successful, it returns a pointer to the string read in.

Otherwise it returns NULL.
The returned value is copied into ptr.
Example:

FILE *fp; 1024

» 1024 a.txt 1048

char s[10];
char *ptr;
fp=fopen(“a.txt”,’r”);

if(fp==NULL)
{

printf(“file cnnnot be opened);
exit(0);

}

ptr=fgets(s,4,fp);

fclose(fp);

Example Programs:

S
SVITPCD | sviT

ptr T

1048

1.Write a C program to read from file using function
fgets.
#include<stdio.h>
void main()
{
FILE *fp;
char str[15];
char *ptr;
fp=fopen(“name.txt”,”’r”):
if(fp==NULL)
{
printf(“file cannot be opened”);
exit(0);

1.Write a C program to read string from keyboard using
function fgets.
#include<stdio.h>
void main()
{
char str[15];
char *ptr;
printf(“Enter the string”);
ptr=fgets(str,10,stdin);
if(ptr==NULL)
{
printf(“reading is unsuccessful”);
exit(0);

Dept of CSE,SVIT

Page 20

Programming in C & DataStructures

} }
ptr=fgets(str,10,fp); printf(“string is”);
if(ptr==NULL) puts(str);
{ fclose(fp);
printf(“reading is unsuccessful”); }
exit(0);
}
printf(“string is”);
puts(str);
fclose(fp);
}
2.fputs()
fputs() is used to write a string into file.
Syntax:
fputs(str,fp);
where

fp ->file pointer which points to the file to be read
str ->string variable where read string will be stored

Example:

FILE *fp,*fp1;

char s[10];

char *ptr;
fp=fopen(“a.txt”,’r”);

fpl=fopen(“b.txt”,”w”

if(fp==NULL)
{

printf(“file cnnnot be opened);

exit(0);

}
ptr=fgets(s,4,fp);
fputs(s,fpl);
fclose(fp);
fclose(fpl);

Example Program:

1024

fp —— 1024 a.txt

SVITPCD

1048

SVIT

ptr

1048

b.txt

SVIT

1.Write a C program to read from file using function fgets and print into file using fputs function.

#include<stdio.h>
void main()

{

Dept of CSE,SVIT

Page 21

Programming in C & DataStructures

FILE *fp,fp1;
char str[15];
char *ptr;
fp=fopen(“name.txt”,”’r”);
fp1=fopen(“output.txt”,”w”);
if(fp==NULL)
{
printf(“file cannot be opened”);
exit(0);
}
ptr=fgets(str,10,fp);
if(ptr==NULL)
{
printf(“reading is unsuccessful”);
exit(0);
}
fputs(str,fpl);
fclose(fp);
fclose(fpl);
}

File 1/0 functions for fgetc() and fputc()

1.fgetc()
fgetc() function is used to read a character from file and store it in memory.
Syntax:
ch=fgetc(fp);

Example 1:

FILE *fp;

fp=fopen(“sec.txt”,”’r”);

ch=fgetc(fp);
Example 2:
FILE *fp; 1024 +—— 1024 atxt
char ch; B ch|pg

fp=fopen(“a.txt”,’r”);
ch=fgets(fp);
fclose(fp);

Dept of CSE,SVIT Page 22

Programming in C & DataStructures

3.fputc()
fgetc() function is used to write a character into a file.
Syntax:
fputc(ch,fp);

Example 1:

FILE *fp;

fp=fopen(“sec.txt”,”w”);

fputc(ch,fp);
Example 2:
FILE *fp,*fpl; 1024 fp —— 1024 a.txt 1048
char ch; SVITPCD s
fp=fopen(“a.txt”,’r”); > SVIT
fpl=fopen(“b.txt”,”w”); ptr
ch=fges(fp); b.txt ’
fputc(ch,fpl); svIT
fclose(fp);
fclose(fpl);

Example Programs

1.Write a C program to copy one file to another using | 2.Write a C program to concatenate two files
fgetc() and fputc() functions. using fgetc() and fputc() functions.
#include<stdio.h> #include<stdio.h>

void main() void main()

{ {

FILE *fpl,*fp2; FILE *fpl,*fp2,*fp3;

char ch; char ch;

fpl=fopen(“filel.txt”,’r”); fpl=fopen(“filel.txt”,’r”);
fp2=fopen(“file2.txt”,”w”); fp2=fopen(“file2.txt”,’r”);
while((ch=fegtc(fp1))!=EOF) fp3=fopen(“file3.txt”,”w”);

{

fputc(ch,fp2); while((ch=fegtc(fp1))!=EOF)

¥ {

fclose(fpl); fputc(ch,fp3);

fclose(fp2); }

Dept of CSE,SVIT Page 23

Programming in C & DataStructures

while((ch=fegtc(fp2))!=EOF)
{
fputc(ch,fp3);
}
fclose(fpl);
fclose(fp2);
fclose(fp3);
}

3.Write a C program for counting the characters, blanks, tabs and lines in file.

#include<stdio.h>

void main()

{

FILE *fp;

char ch;

int cc=0,bc=0,tc=0,lc=0;
fpl=fopen(“filel.txt”,’r”);
while((ch=fegtc(fpl1))!=EOF)

{

CCH+:

if(ch=="") bc++;

if(ch=="\n") Ic++;

if(ch=="\t’) tc++;

}

fclose(fp);

printf(“total number of characters=%d\n”,cc);
printf(“total number of tabs=%d\n",tc);
printf(“total number of lines=%d\n”,Ic);
printf(“total number of blanks=%d\n”,bc);

}

4.13 Command Line Arguments

» The interface which allows the user to interact with the computer by providing

instructions in the form of typed commands is called command line interface.

> In the command prompt user types the commands.

Example:

In MS_DOS command prompt looks as follows:

C:\>copy Tl.c T2.c

Dept of CSE,SVIT

Page 24

Programming in C & DataStructures

The above copy command copies contents of T1.c to T2.c. In the above line copy, T1.c and
T2.c are called command line arguments.

Write a C program to accept a file either through command line or as specified by
user during runtime and displays the contents.

#include<stdio.h>
#include<string.h>

void main(int argc,char *argv([])
{

FILE *fp;

char fname[10];

char ch;

if(arg==1)

{

printf(“\n Enter file name\n”);
scanf(“%s”,fname);

¥

else

{
strepy(fname, argv[1]);

}

fp=fopen(fname,”r”);
if(fp==NULL)

{

printf(“‘cannot open file”);
exit(0);

}

printf(“‘contents of file are\n”);
while((ch=fgetc(fp))!=EOF)

{

printf(“%c”,ch);

}

}

Dept of CSE,SVIT Page 25

