
Module V
Digital Design and Computer Organization (BCS302)

 Dr Ajay V G, Dept. of CSE,SVIT

MODULE 5:

Basic Processing Unit and Pipelining

Basic Processing Unit: Some Fundamental Concepts: Register Transfers, Performing ALU
operations, fetching a word from Memory, Storing a word in memory. Execution of a Complete
Instruction.

Pipelining: Basic concepts, Role of Cache memory, Pipeline Performance.

SOME FUNDAMENTAL CONCEPTS

The processing unit which executes machine instructions and coordinates

the activities of other units of computer is called the Instruction Set

Processor (ISP) or processor or Central Processing Unit (CPU).

The primary function of a processor is to execute the instructions stored

in memory. Instructions are fetched from successive memory locations

and executed in processor, until a branch instruction occurs.

• To execute an instruction, processor has to perform following 3 steps:

1. Fetch contents of memory-location pointed to by PC. Content of this

location is an instruction to be executed. The instructions are loaded

into IR, Symbolically, this operation is written as:

IR  [[PC]]

2. Increment PC by

4. PC [PC] +4

3. Carry out the actions specified by instruction (in the IR).

The steps 1 and 2 are referred to as Fetch Phase.

Step 3 is referred to as Execution Phase.

SINGLE BUS ORGANIZATION

• Here the processor contain only a single bus for the movement of data,

address and instructions.

• ALU and all the registers are interconnected via a Single Common Bus
(Figure 7.1).

• Data & address lines of the external memory-bus is connected to

the internal processor-bus via MDR & MAR respectively.

 (MDR -> Memory Data Register, MAR -> Memory Address Register).

• MDR has 2 inputs and 2 outputs. Data may be loaded

→ into MDR either from memory-bus (external) or

→ from processor-bus (internal).

• MAR‟s input is connected to internal-bus; MAR‟s output is connected to

external- bus. (address sent from processor to memory only)

Module V
Digital Design and Computer Organization (BCS302)

 Dr Ajay V G, Dept. of CSE,SVIT

• Instruction Decoder & Control Unit is responsible for

→ Decoding the instruction and issuing the control-signals to all the units

inside the processor.

→ implementing the actions specified by the instruction (loaded in the IR).
• Processor Registers - Register R0 through R(n-1) are also called

as General Purpose Register.

The programmer can access these registers for general-purpose use.

• Temporary Registers – There are 3 temporary registers in the processor.
Registers

- Y, Z & Temp are used for temporary storage during program-

execution. The programmer cannot access these 3 registers.

• In ALU,1) “A‟ input gets the operand from the output of the multiplexer(MUX).

2) “B‟ input gets the operand directly from the processor-bus.

• There are 2 options provided for “A‟ input of the ALU.

• MUX is used to select one of the 2 inputs.

• MUX selects either

→ output of Y or
→ constant-value 4(which is used to increment PC content).

• An instruction is executed by performing one or more of the following
operations:

Module V
Digital Design and Computer Organization (BCS302)

 Dr Ajay V G, Dept. of CSE,SVIT

1) Transfer a word of data from one register to another or to the ALU.

2) Perform arithmetic or a logic operation and store the result in a register.

3) Fetch the contents of a given memory-location and load them into a register.

4) Store a word of data from a register into a given memory-location.

• Disadvantage: Only one data-word can be transferred over the bus in a

clock cycle. Solution: Provide multiple internal-paths. Multiple paths allow

several data- transfers to take place in parallel.

REGISTER TRANSFERS

• Instruction execution involves a sequence of steps in which data are

transferred from one register to another.

• For each register, two control-signals are used: Riin & Riout. These are

called Gating Signals

• Riin=1,the data on the bus are loaded into Ri,

• Riout=1,the contents of register are placed on the bus,

• Riout=0,the bus can be used for transferring data from other registers.

Suppose we wish to transfer the contents of register R1 to register R2. This

can be accomplished as follows:

1. Enable the output of registers R1 by setting R1out to 1 (Figure 7.2).

This places the contents of R1 on processor-bus.

2. Enable the input of register R4 by setting R4in to 1. This loads data from

processor-bus into register R4.

• All operations and data transfers within the processor take place

within time- periods defined by the processor-clock.

 Digital Design and Computer Organization (BCS302)

Dr Ajay V G , Dept. of CSE,SVIT

• The control-signals that govern a particular transfer are asserted at the

start of the clock cycle.

Input & Output Gating for one Register Bit
Implementation for one bit of register Ri(as shown in fig 7.3)

 All operations and data transfers are controlled by the processor clock.

• A 2-input multiplexer is used to select the data applied to the input

of an edge- triggered D flip-flop.

• Riin=1,Multiplexer selects data on the bus. This data will be loaded into

flip-flop at rising-edge of clock.

• Riin=0,Multiplexer feeds back the value currently stored in the flipflop

• Q output of flip-flop is connected to bus via a tri-state gate.

• When Riout=0, gates output in the high-impedance state.

• When Riout=1,gate drives the bus to 0 or 1,depending on the value

of Q.

 PERFORMING AN ARITHMETIC OR LOGIC OPERATION(refer fig:7.2)

• The ALU is a combinational circuit that has no internal storage.

• The ALU performs arithmetic and logic operations on the 2 operands

applied to its A and B inputs.

• ALU gets the two operands, one is from MUX and another from bus. The
result is temporarily stored in register Z.

• Therefore, a sequence of operations [R3]=[R1]+[R2].

1) R1out, Yin

2) R2out, Select Y, Add, Zin

3) Zout, R3in

Instruction execution proceeds as follows:

Step 1 --> Contents from register R1 are loaded into register Y.

 Step2 --> Contents from Y and from register R2 are applied to the A and

B inputs of ALU; Addition is performed & Result is stored in the Z register.

Step 3 --> The contents of Z register is stored in the R3 register.

• The signals are activated for the duration of the clock cycle

corresponding to that step. All other signals are inactive.

 FETCHING A WORD FROM MEMORY

• To fetch instruction/data from memory, the p rocessor has to spec i f y

the address o f the memory lo ca t ion where th i s in fo rmat ion i s

s to r ed and r eques t a Read opera t i on .

• processor transfers required address to MAR. At the same time, processor

issues Read signal on control-lines of memory-bus.

• When requested-data are received from memory, they are stored in MDR.

From MDR, they are transferred to other registers in the processor.

The Connections for register MDR has shown in fig 7.4

 Digital Design and Computer Organization (BCS302)

Dr Ajay V G , Dept. of CSE,SVIT

CONTROL-SIGNALS OF MDR

• The MDR register has 4 control-signals (Figure 7.4):

1) MDRin & MDRout control the connection to the internal processor data bus

&

2) MDRinE & MDRoutE control the connection to the external memory Data

bus.

• Similarly, MAR register has 2 control-signals.

1) MARin: controls the connection to the internal processor address bus &

2) MARout: controls the connection to the memory address bus.

The response time of each memory access varies. To accommodate this
MFC is used(MFC= Memory Function Completed)

MFC=1 indicate that contents of specified location have been read and are

available on the data lines of the memory bus.

• Consider the instruction Move (R1),R2. The action needed to execute this
instruction are

The sequence of steps is (Figure 7.5):

1) R1out,MARin,Read ;desired address is loaded into MAR & Read command is

issued.

2) MDRinE,WMFC; load MDR from memory-bus & Wait for MFC response

from memory.

3) MDRout, R2in; load R2 from MDR.

where WMFC=control-signal that causes processor's control. circuitry

to wait for arrival of MFC signal.

 Digital Design and Computer Organization (BCS302)

Dr Ajay V G , Dept. of CSE,SVIT

Storing a Word in Memory

• Consider the instruction Move R2,(R1). This requires the following sequence:

1) R1out, MARin ;desired address is loaded into MAR.

2) R2out,MDRin,Write ;data to be written are loaded into MDR & Write

command is issued.

3) MDRoutE, WMFC ;load data into memory-location pointed by R1 from MDR.

EXECUTION OF A COMPLETE INSTRUCTION

• Consider the instruction Add (R3),R1 which adds the contents of a

memory-location pointed by R3 to register R1.

• Executing this instruction requires the following actions:

1) Fetch the instruction.

2) Fetch the first operand.

3) Perform the addition

4) Load the result into R1.

Fig:7.6 gives the sequence of control steps required to perform these operations for the
single -bus architecture .

 Digital Design and Computer Organization (BCS302)

Dr Ajay V G , Dept. of CSE,SVIT

➢ Step1--> The instruction-fetch operation is initiated by loading contents of PC

into MAR & sending a Read request to memory. The Select signal is set to
Select4, which causes the Mux to select constant 4. This value is added to
operand at input B (PC‟s content), and the result is stored in Z.

➢ Step2--> Updated value in Z is moved to PC. This completes the PC increment
operation and PC will now point to next instruction.

➢ Step3--> Fetched instruction is moved into MDR and then to IR. The step 1
through 3 constitutes the Fetch Phase.

➢ At the beginning of step 4, the instruction decoder interprets the contents of
the IR. This enables the control circuitry to activate the control-signals for steps
4 through 7.

The step 4 through 7 constitutes the Execution Phase.
➢ Step4--> Contents of R3 are loaded into MAR & a memory read signal is issued.
➢ Step5--> Contents of R1 are transferred to Y to prepare for addition.
➢ Step6--> When Read operation is completed, memory-operand is available in MDR,
➢ Step7--> Sum is stored in Z, then transferred to R1.The End signal causes a new

instruction fetch cycle to begin by returning to step1.

Pipelining:
Basic Concepts:
The speed of execution of programs is influenced by many factors.

➢ One way to improve performance is to use faster circuit technology to build the

processor and the main memory. Another possibility is to arrange the hardware so that

more than one operation can be performed at the same time. In this way, the number

of operations performed per second is increased even though the elapsed time needed

to perform any one operation is not changed.

➢ Pipelining is a particularly effective way of organizing concurrent activity in a

computer system.

➢ The technique of decomposing a sequential process into sub-operations, with each sub-

operation being executed in a dedicated segment .

➢ pipelining is commonly known as an assembly-line operation.

 Digital Design and Computer Organization (BCS302)

Dr Ajay V G , Dept. of CSE,SVIT

Consider how the idea of pipelining can be used in a computer. The processor executes

a program by fetching and executing instructions, one after the other.

Let Fi and Ei refer to the fetch and execute steps for instruction Ii . Execution of a

program consists of a sequence of fetch and execute steps, as shown in Figure a.

Now consider a computer that has two separate hardware units, one for fetching

instructions and another for executing them, as shown in Figure b. The instruction

fetched by the fetch unit is deposited in an intermediate storage buffer, B1. This buffer

is needed to enable the execution unit to execute the instruction while the fetch unit is

fetching the next instruction. The results of execution are deposited in the destination

location specified by the instruction.

The computer is controlled by a clock.

any instruction fetch and execute steps completed in one clock cycle.

Operation of the computer proceeds as in Figure 8.1c.

 In the first clock cycle, the fetch unit fetches an instruction I1 (step F1) and

stores it in buffer B1 at the end of the clock cycle.

In the second clock cycle, the instruction fetch unit proceeds with the fetch

operation for instruction I2 (step F2). Meanwhile, the execution unit performs the

operation specified by instruction I1, which is available to it in buffer B1 (step E1).

By the end of the second clock cycle, the execution of instruction I1 is completed

and instruction I2 is available. Instruction I2 is stored in B1, replacing I1, which is

no longer needed.

Step E2 is performed by the execution unit during the third clock cycle, while

instruction I3 is being fetched by the fetch unit. In this manner, both the fetch and

execute units are kept busy all the time. If the pattern in Figure 8.1c can be

sustained for a long time, the completion rate of instruction execution will be twice

that achievable by the sequential operation depicted in Figure a.

 Digital Design and Computer Organization (BCS302)

Dr Ajay V G , Dept. of CSE,SVIT

 Idea of Pipelining in a computer

a pipelined processor may process each instruction in four steps, as follows:

F (Fetch): read the instruction from the memory.

D (Decode): decode the instruction and fetch the source operand(s).

E (Execute): perform the operation specified by the instruction.

W (Write): store the result in the destination location.

The sequence of events for this case is shown in Figure a. Four instructions are in

progress at any given time. This means that four distinct hardware units are

needed, as shown in Figure b. These units must be capable of performing their

tasks simultaneously and without interfering with one another. Information is

passed from one unit to the next through a storage buffer. As an instruction

progresses through the pipeline, all the information needed by the stages

 Digital Design and Computer Organization (BCS302)

Dr Ajay V G , Dept. of CSE,SVIT

downstream must be passed along. For example, during clock cycle 4, the

information in the buffers is as follows:

➢ Buffer B1 holds instruction I3, which was fetched in cycle 3 and is being

decoded by the instruction-decoding unit.

➢ Buffer B2 holds both the source operands for instruction I2 and the

specification of the operation to be performed. This is the information

produced by the decoding hardware in cycle 3. The buffer also holds the

information needed for the write step of instruction I2 (stepW2). Even though

it is not needed by stage E, this information must be passed on to stage W

in the following clock cycle to enable that stage to perform the required Write

operation.

➢ Buffer B3 holds the results produced by the execution unit and the

destination information for instruction I1.

Role of Cache Memory

Each stage in a pipeline is expected to complete its operation in one clock

cycle. Hence, the clock period should be sufficiently long to complete

the task being performed in any stage. If different units require different

amounts of time, the clock period must allow the longest task to be

completed. A unit that completes its task early is idle for the remainder of

the clock period. Hence, pipelining is most effective in improving

performance if the tasks being performed in different stages require about

the same amount of time. This consideration is particularly important for the

instruction fetch step, which is assigned one clock period in Figure a. The

clock cycle has to be equal to or greater than the time needed to complete a

fetch operation. However, the access time of the main memory may be as

much as ten times greater than the time needed to perform basic pipeline

stage operations inside the processor, such as adding two numbers. Thus, if

each instruction fetch required access to the main memory, pipelining

would be of little value.

The use of cache memories solves the memory access problem. In

particular, when a cache is included on the same chip as the processor,

access time to the cache is usually the same as the time needed to perform

other basic operations inside the processor. This makes it possible to divide

instruction fetching and processing into steps that are more or less equal in

duration. Each of these steps is performed by a different pipeline stage, and

the clock period is chosen to correspond to the longest one.

 Digital Design and Computer Organization (BCS302)

Dr Ajay V G , Dept. of CSE,SVIT

Pipeline Performance:

➢ The potential increase in performance resulting from pipelining is

proportional to the number of pipeline stages.

➢ However, this increase would be achieved only if pipelined operation as

depicted in Figure a could be sustained without interruption throughout

program execution.

➢ Unfortunately, this is not the True.

➢ Floating point may involve many clock cycle.

➢ For a variety of reasons, one of the pipeline stages may not be able to

complete its processing task for a given instruction in the time allotted. For

example, stage E in the four stage pipeline of Figure b is responsible for

arithmetic and logic operations, and one clock cycle is assigned for this task.

Although this may be sufficient for most operations, some operations, such

as divide, may require more time to complete. Figure shows an example in

which the operation specified in instruction I2 requires three cycles to

complete, from cycle 4 through cycle 6. Thus, in cycles 5 and 6, the Write

stage must be told to do nothing, because it has no data to work with.

Meanwhile, the information in buffer B2 must remain intact until the

Execute stage has completed its operation. This means that stage 2 and, in

turn, stage 1 are blocked from accepting new instructions because the

information in B1 cannot be overwritten. Thus, steps D4 and F5 must be

postponed as shown.

Pipelined operation in Figure 8.3 is said to have been stalled for two clock

cycles. Normal pipelined operation resumes in cycle 7. Any condition that

causes the pipeline to stall is called a hazard. We have just seen an example

of a data hazard.

1) A data hazard is any condition in which either the source or the

destination operands of an instruction are not available at the time

expected in the pipeline. As a result some operation has to be

delayed, and the pipeline stalls.

Eg: for Data Hazard

 Digital Design and Computer Organization (BCS302)

Dr Ajay V G , Dept. of CSE,SVIT

2) control hazards or instruction hazards: The pipeline may also be stalled

because of a delay in the availability of an instruction.

For example, this may be a result of a miss in the cache .

3) A third type of hazard known as a structural hazard: This is the

situation when two instructions require the use of a given hardware

resource at the same time.

The effect of a cache miss on pipelined operation is illustrated in Figure.

Instruction I1 is fetched from the cache in cycle 1, and its execution proceeds

normally. However, the fetch operation for instruction I2, which is started in

cycle 2, results in a cache miss. The instruction fetch unit must now suspend

any further fetch requests and wait for I2 to arrive. We assume that

instruction I2 is received and loaded into buffer B1 at the end of cycle 5. The

pipeline resumes its normal operation at that point.

An alternative representation of the operation of a pipeline in the case of a

cache miss is shown in Figure b. This figure gives the function performed by

each pipeline stage in each clock cycle. Note that the Decode unit is idle in

cycles 3 through 5, the Execute unit is idle in cycles 4 through 6, and the

Write unit is idle in cycles 5 through 7. Such idle periods are called stalls.

They are also often referred to as bubbles in the pipeline.

Eg: for Instruction Hazard

 Digital Design and Computer Organization (BCS302)

Dr Ajay V G , Dept. of CSE,SVIT

If instructions and data reside in the same cache unit, only one instruction can

proceed and the other instruction is delayed. Many processors use separate

instruction and data caches to avoid this delay.

 An example of a structural hazard is shown in Figure. This figure shows how the

load instruction

 Load X(R1),R2

➢ The memory address, X+[R1], is computed in stepE2 in cycle 4, then memory

access takes place in cycle 5. The operand read from memory is written into

register R2 in cycle 6. This means that the execution step of this instruction

takes two clock cycles (cycles 4 and 5). It causes the pipeline to stall for one

cycle, because both instructions I2 and I3 require access to the register file

in cycle 6.

➢ Even though the instructions and their data are all available, the pipeline is

stalled because one hardware resource, the register file, cannot handle two

operations at once. If the register file had two input ports, that is, if it allowed

two simultaneous write operations, the pipeline would not be stalled. In

general, structural hazards are avoided by providing sufficient hardware

resources on the processor chip.

It is important to understand that pipelining does not result in

individual instructions being executed faster; rather, it is the

throughput that increases, where throughput is measured by the rate

at which instruction execution is completed.

The pipeline stalls, causes degradation in pipeline performance.

We need to identify all hazards that may cause the pipeline to stall

and to find ways to minimize their impact.

