Digital Design and Computer Organization (BCS302) Module V

MODULE 5:
Basic Processing Unit and Pipelining

Basic Processing Unit: Some Fundamental Concepts: Register Transfers, Performing ALU
operations, fetching a word from Memory, Storing a word in memory. Execution of a Complete
Instruction.

Pipelining: Basic concepts, Role of Cache memory, Pipeline Performance.

SOME FUNDAMENTAL CONCEPTS

The processing unit which executes machine instructions and coordinates
the activities of other units of computer is called the Instruction Set
Processor (ISP) or processor or Central Processing Unit (CPU).

The primary function of a processor is to execute the instructions stored
in memory. Instructions are fetched from successive memory locations
and executed in processor, until a branch instruction occurs.

« To execute an instruction, processor has to perform following 3 steps:

1. Fetch contents of memory-location pointed to by PC. Content of this
location isan instruction to be executed. The instructions are loaded
into IR, Symbolically, this operation is written as:
IR « [[PC]]

2. Increment PC by
4.PC «[PC] +4

3. Carry out the actions specified by instruction (in the IR).

The steps 1 and 2 are referred to as Fetch Phase.
Step 3 is referred to as Execution Phase.

SINGLE BUS ORGANIZATION

e Here the processor contain only a single bus for the movement of data,
address andinstructions.
« ALU and all the registers are interconnected via a Single Common Bus
(Figure 7.1).
e Data & address lines of the external memory-bus is connected to
the internal processor-bus via MDR & MAR respectively.
(MDR -> Memory Data Register, MAR -> Memory Address Register).
« MDR has 2 inputs and 2 outputs. Data may be loaded
— into MDR either from memory-bus (external) or
— from processor-bus (internal).
« MAR's input is connected to internal-bus; MAR's output is connected to
external- bus. (address sent from processor to memory only)

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

Module V

e Instruction Decoder & Control Unit is responsible for
— Decoding the instruction and issuing the control-signals to all the units
inside theprocessor.

— implementing the actions specified by the instruction (loaded in the IR).
 Processor Registers - Register RO through R(n-1) are also called

as GeneralPurpose Register.

The programmer can access these registers for general-purpose use.

e Temporary Registers — There are 3 temporary registers in the processor.
Registers

-Y, Z & Temp are used for temporary storage during program-

execution. The programmer cannot access these 3 registers.

In ALU,1) “A” input gets the operand from the output of the multiplexer(MUX).

2) “B* input gets the operand directly from the processor-bus.

e There are 2 options provided for “A” input of the ALU.

e MUX is used to select one of the 2 inputs.

e MUX selects either

— output of Y or

— constant-value 4(which is used to increment PC content).

e An instruction is executed by performing one or more of the following
operations:

PN Conacred sigrals
=+ t--t
B e
g T
- MDE -
D ®
¥ I
{”:nm;mt-l- f! - RO
Snln:t-—ﬁk MUX ; .

" L '

A gt
ALU Sub
soavbnal . ALL
Himes .
Carry-in

I —

AY
Figure 7.1 Singlebus orgonizobion of the dotapath inside o processor,

¢
e

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302) Module V

1) Transfer a word of data from one register to another or to the ALU.
2) Perform arithmetic or a logic operation and store the result in a register.
3) Fetch the contents of a given memory-location and load them into a register.

4) Store a word of data from a register into a given memory-location.
« Disadvantage: Only one data-word can be transferred over the bus in a
clock cycle. Solution: Provide multiple internal-paths. Multiple paths allow
several data- transfers to take place in parallel.

REGISTER TRANSFERS
e Instruction execution involves a sequence of steps in which data are
transferred from one register to another.
« For each register, two control-signals are used: Riin & Riout. These are
called Gating Signals
e Riin=1,the data on the bus are loaded into Ri,
¢ Riout=1,the contents of register are placed on the bus,
¢ Riout=0,the bus can be used for transferring data from other registers.
Suppose we wish to transfer the contents of register R1 to register R2.This
can be accomplished as follows:
1. Enable the output of registers R1 by setting Rlout to 1 (Figure 7.2).
This places thecontents of R1 on processor-bus.
2. Enable the input of register R4 by setting R4in to 1.This loads data from
processor-bus into register R4.
e All operations and data transfers within the processor take place
within time-periods defined by the processor-clock.

r R,

Figure 7.2 Input and output gating for the ragisters in : Figure 7.3 Input and output gating for one register bit.
Figura 7.1.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

e The control-signals that govern a particular transfer are asserted at the
start of theclock cycle.

Input & Output Gating for one Register Bit
Implementation for one bit of register Ri(as shown in fig 7.3)
» All operations and data transfers are controlled by the processor clock.

e A 2-input multiplexer is used to select the data applied to the input
of an edge-triggered D flip-flop.
e Riin=1,Multiplexer selects data on the bus. This data will be loaded into
flip-flop at rising-edgeof clock.
« Riin=0,Multiplexer feeds back the value currently stored in the flipflop
e Q output of flip-flop is connected to bus via a tri-state gate.
e When Riout=0, gates output in the high-impedance state.
e When Riout=1,gate drives the bus to O or 1,depending on the value

of Q.

PERFORMING AN ARITHMETIC OR LOGIC OPERATION(refer fig:7.2)
e The ALU is a combinational circuit that has no internal storage.
e The ALU performs arithmetic and logic operations on the 2 operands
applied to its A and Binputs.
« ALU gets the two operands, one is from MUX and another from bus. The
result is temporarily stored in register Z.
e Therefore, a sequence of operations [R3]=[R1]+[R2].
1) Rlout, Yin
2) R2out, Select Y, Add, Zin
3) Zout, R3in
Instruction execution proceeds as follows:
Step 1 --> Contents from register R1 are loaded into register Y.
Step2 --> Contents from Y and from register R2 are applied to the A and
B inputs of ALU;Addition is performed & Result is stored in the Z register.
Step 3 --> The contents of Z register is stored in the R3 register.
» The signals are activated for the duration of the clock cycle
corresponding to thatstep. All other signals are inactive.
FETCHING A WORD FROM MEMORY
e To fetch instruction/data from memory, the processor has to specify
the address of the memory location where this information is
stored and request a Read operation.
. processor transfers required address to MAR. At the same time, processor
issues Read signal on control-lines of memory-bus.
. When requested-data are received from memory, they are stored in MDR.
From MDR, they are transferred to other registers in the processor.
The Connections for register MDR has shown in fig 7.4

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

G e it
L
A y mRtmrE MDR,,,
i +A
MDR
[[
{/ \4
MDR,-“E b’mRin

Figure 7.4 Connection and control signols for register MDR.

CONTROL-SIGNALS OF MDR
« The MDR register has 4 control-signals (Figure 7.4):

1) MDRin & MDRout control the connection to the internal processor data bus
&

2) MDRinE & MDRoutE control the connection to the external memory Data
bus.
« Similarly, MAR register has 2 control-signals.

1) MARin: controls the connection to the internal processor address bus &

2) MARout: controls the connection to the memory address bus.

The response time of each memory access varies. To accommodate this

MFC is used(MFC= Memory Function Completed)

MFC=1 indicate that contents of specified location have been read and are

available on the data lines of the memory bus.

e Consider the instruction Move (R1),R2. The action needed to execute this
instruction are

1. MAR «[R]]

2. Start a Read operation on the memory bus

3. Wait for the MFC response from the memory
4. Load MDR from the memory bus

5. R2 «[MDR]

The sequence of steps is (Figure 7.5):
1) R1lout, MARin,Read ;desired address is loaded into MAR & Read command is
issued.
2) MDRing, WMFC; load MDR from memory-bus & Wait for MFC response
from memory.
3) MDRout, R2in; load R2 from MDR.
where WMFC=control-signal that causes processor's control. circuitry
to wait forarrival of MFC signal.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

Step |-—- 1 —--i=- 2 -—i—~ 3'-—-—,
we LML L 1L
" e

: | '
Address X

MFC T 1|
. L

Figure 7.5 Timing of o memory Read operafion.

Storing a Word in Memory
* Consider the instruction Move R2,(R1). This requires the following sequence:
1) R1out, MAR;, ;desired address is loaded into MAR.
2) R2out, MDRin,Write ;data to be written are loaded into MDR & Write
commandis issued.
3) MDRoute, WMFC ;load data into memory-location pointed by R1 from MDR.

EXECUTION OF A COMPLETE INSTRUCTION
e Consider the instruction Add (R3),R1 which adds the contents of a
memory-location pointed by R3 to register R1.

« Executing this instruction requires the following actions:
1) Fetch the instruction.
2) Fetch the first operand.
3) Perform the addition
4) Load the result into R1.

Fig:7.6 gives the sequence of control steps required to perform these operations for the
single -bus architecture .

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

VVVY

Step Action

PCout, MAR,y,, Read, Selectd, Add, Z,
Zouty PCin; Yin, WMFC

MDRus, IRz,

R3,u:, MAR,,,, Read

Rlyu, Yin, WMFC

MDR v, SelectY, Add, Zyn

Zoue; Rlin, End

=] o o o L bI

Figure 7.6 Conirol sequence for exaculion of the instruction Add (R3),R1

Stepl--> The instruction-fetch operation is initiated by loading contents of PC
into MAR & sending a Read request to memory. The Select signal is set to
Select4, which causes the Mux to select constant 4. Thisvalue is added to
operand at input B (PC*s content), and the result is stored in Z.

Step2--> Updated value in Z is moved to PC. This completes the PC increment
operationand PC will now point to next instruction.

Step3--> Fetched instruction is moved into MDR and then to IR. The step 1
through 3 constitutes the Fetch Phase.

At the beginning of step 4, the instruction decoder interprets the contents of
the IR. This enables the control circuitry to activate the control-signals for steps
4 through 7.

The step 4 through 7 constitutes the Execution Phase.
Step4--> Contents of R3 are loaded into MAR & a memory read signal is issued.
Step5--> Contents of R1 are transferred to Y to prepare for addition.
Step6--> When Read operation is completed, memory-operand is available in MDR,
Step7--> Sum is stored in Z, then transferred to R1.The End signal causes a new
instruction fetch cycle to begin by returning to stepl.

Pipelining:
Basic Concepts:
The speed of execution of programs is influenced by many factors.

One way to improve performance is to use faster circuit technology to build the
processor and the main memory. Another possibility is to arrange the hardware so that
more than one operation can be performed at the same time. In this way, the number
of operations performed per second is increased even though the elapsed time needed
to perform any one operation is not changed.

Pipelining is a particularly effective way of organizing concurrent activity in a
computer system.

The technique of decomposing a sequential process into sub-operations, with each sub-
operation being executed in a dedicated segment .

pipelining is commonly known as an assembly-line operation.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

Consider how the idea of pipelining can be used in a computer. The processor executes
a program by fetching and executing instructions, one after the other.

Let Fi and Ei refer to the fetch and execute steps for instruction Ii . Execution of a
program consists of a sequence of fetch and execute steps, as shown in Figure a.

— Time

(a) Sequential execution

Interstage buffer

Bl

Instruction .
> Execution

fetch .
B umt
umt

(b) Hardware organization

Now consider a computer that has two separate hardware units, one for fetching
instructions and another for executing them, as shown in Figure b. The instruction
fetched by the fetch unit is deposited in an intermediate storage buffer, B1. This buffer
is needed to enable the execution unit to execute the instruction while the fetch unit is
fetching the next instruction. The results of execution are deposited in the destination
location specified by the instruction.

The computer is controlled by a clock.

any instruction fetch and execute steps completed in one clock cycle.

Operation of the computer proceeds as in Figure 8.1c.

In the first clock cycle, the fetch unit fetches an instruction I1 (step F1) and
stores it in buffer B1 at the end of the clock cycle.

In the second clock cycle, the instruction fetch unit proceeds with the fetch
operation for instruction 12 (step F2). Meanwhile, the execution unit performs the
operation specified by instruction 11, which is available to it in buffer B1 (step E1).
By the end of the second clock cycle, the execution of instruction 11 is completed
and instruction 12 is available. Instruction 12 is stored in B1, replacing I1, which is
no longer needed.

Step E2 is performed by the execution unit during the third clock cycle, while
instruction I3 is being fetched by the fetch unit. In this manner, both the fetch and
execute units are kept busy all the time. If the pattern in Figure 8.1c can be
sustained for a long time, the completion rate of instruction execution will be twice
that achievable by the sequential operation depicted in Figure a.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

— Time

Clock cycle | 2 3 -
Instruction

I F, E,

I Fa E»

I5 Fs E-

(c) Pipelined execution

Figure 8.1 Basic idea of instruction pipelining.

Idea of Pipelining in a computer

a pipelined processor may process each instruction in four steps, as follows:
F (Fetch): read the instruction from the memory.

D (Decode): decode the instruction and fetch the source operand(s).

E (Execute): perform the operation specified by the instruction.

W (Write): store the result in the destination location.

— = Time

Clock cycle | 2 3 4 5 6 7
Instruction

I F, D, E, W,

I, F> D, E, W,

I3 Fy D4 E; W,

Iy Fy Dy Ey W,

(a) Instruction execution divided into four steps

Interstage buffers

D : Decode
F : Fetch instruction E: Execute W : Write
instruction and fetch operation results
operands

Bl B2 B3

(b) Hardware organization

The sequence of events for this case is shown in Figure a. Four instructions are in
progress at any given time. This means that four distinct hardware units are
needed, as shown in Figure b. These units must be capable of performing their
tasks simultaneously and without interfering with one another. Information is
passed from one unit to the next through a storage buffer. As an instruction
progresses through the pipeline, all the information needed by the stages

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

downstream must be passed along. For example, during clock cycle 4, the
information in the buffers is as follows:

>

>

Buffer B1 holds instruction I3, which was fetched in cycle 3 and is being
decoded by the instruction-decoding unit.

Buffer B2 holds both the source operands for instruction 12 and the
specification of the operation to be performed. This is the information
produced by the decoding hardware in cycle 3. The buffer also holds the
information needed for the write step of instruction 12 (stepW2). Even though
it is not needed by stage E, this information must be passed on to stage W
in the following clock cycle to enable that stage to perform the required Write
operation.

Buffer B3 holds the results produced by the execution unit and the
destination information for instruction I1.

Role of Cache Memory

Each stage in a pipeline is expected to complete its operation in one clock
cycle. Hence, the clock period should be sufficiently long to complete
the task being performed in any stage. If different units require different
amounts of time, the clock period must allow the longest task to be
completed. A unit that completes its task early is idle for the remainder of
the clock period. Hence, pipelining is most effective in improving
performance if the tasks being performed in different stages require about
the same amount of time. This consideration is particularly important for the
instruction fetch step, which is assigned one clock period in Figure a. The
clock cycle has to be equal to or greater than the time needed to complete a
fetch operation. However, the access time of the main memory may be as
much as ten times greater than the time needed to perform basic pipeline
stage operations inside the processor, such as adding two numbers. Thus, if
each instruction fetch required access to the main memory, pipelining
would be of little value.

The use of cache memories solves the memory access problem. In
particular, when a cache is included on the same chip as the processor,
access time to the cache is usually the same as the time needed to perform
other basic operations inside the processor. This makes it possible to divide
instruction fetching and processing into steps that are more or less equal in
duration. Each of these steps is performed by a different pipeline stage, and
the clock period is chosen to correspond to the longest one.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

A\

Pipeline Performance:

The potential increase in performance resulting from pipelining is
proportional to the number of pipeline stages.

However, this increase would be achieved only if pipelined operation as
depicted in Figure a could be sustained without interruption throughout
program execution.

Unfortunately, this is not the True.

Floating point may involve many clock cycle.

For a variety of reasons, one of the pipeline stages may not be able to
complete its processing task for a given instruction in the time allotted. For
example, stage E in the four stage pipeline of Figure b is responsible for
arithmetic and logic operations, and one clock cycle is assigned for this task.
Although this may be sufficient for most operations, some operations, such
as divide, may require more time to complete. Figure shows an example in
which the operation specified in instruction 12 requires three cycles to
complete, from cycle 4 through cycle 6. Thus, in cycles 5 and 6, the Write
stage must be told to do nothing, because it has no data to work with.
Meanwhile, the information in buffer B2 must remain intact until the
Execute stage has completed its operation. This means that stage 2 and, in
turn, stage 1 are blocked from accepting new instructions because the
information in B1 cannot be overwritten. Thus, steps D4 and F5 must be
postponed as shown.

— Time

Clock cycle 1 2 3 4 5 6 7 8 9

Instruction

[F D, E, Wi

I Fs Ds Es

Eg: for Data Hazard

Figure 8.3 Effect of an execution operation taking more than one clock cycle.

Pipelined operation in Figure 8.3 is said to have been stalled for two clock

cycles. Normal pipelined operation resumes in cycle 7. Any condition that

causes the pipeline to stall is called a hazard. We have just seen an example
of a data hazard.

1) A data hazard is any condition in which either the source or the
destination operands of an instruction are not available at the time
expected in the pipeline. As a result some operation has to be
delayed, and the pipeline stalls.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

2) control hazards or instruction hazards: The pipeline may also be stalled

because of a delay in the availability of an instruction.
For example, this may be a result of a miss in the cache .

3) A third type of hazard known as a structural hazard: This is the
situation when two instructions require the use of a given hardware

resource at the same time.

The effect of a cache miss on pipelined operation is illustrated in Figure.
Instruction I1 is fetched from the cache in cycle 1, and its execution proceeds
normally. However, the fetch operation for instruction 12, which is started in
cycle 2, results in a cache miss. The instruction fetch unit must now suspend
any further fetch requests and wait for 12 to arrive. We assume that
instruction 12 is received and loaded into buffer B1 at the end of cycle 5. The

pipeline resumes its normal operation at that point.

— Time

Clock cycle l 2 3 4 5 6 7 8 9
Instruction

I Fy D, E| W,

I F D, E, W

I F D3 E W

(a) Instruction execution steps in successive clock cycles
— Timne
Clock cycle | 2 3 - 5 6 7 8 9
Stage

F: Feich F| F, F, F, F, F;

D: Decode D, idle idle D5 D4

E: Execute E| idle idle dle E, E;

W: Write W, idle idle W, W,

(b) Function performed by each processor stage in successive clock cycles

Figure 8.4 Pipeline siall caused by a cache miss in F2. Eg: for Instruction Hazard

An alternative representation of the operation of a pipeline in the case of a
cache miss is shown in Figure b. This figure gives the function performed by
each pipeline stage in each clock cycle. Note that the Decode unit is idle in
cycles 3 through 5, the Execute unit is idle in cycles 4 through 6, and the

Write unit is idle in cycles 5 through 7. Such idle periods are called stalls.

They are also often referred to as bubbles in the pipeline.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

If instructions and data reside in the same cache unit, only one instruction can
proceed and the other instruction is delayed. Many processors use separate
instruction and data caches to avoid this delay.
An example of a structural hazard is shown in Figure. This figure shows how the
load instruction

Load X(R1),R2

» The memory address, X+[R1], is computed in stepE2 in cycle 4, then memory
access takes place in cycle 5. The operand read from memory is written into
register R2 in cycle 6. This means that the execution step of this instruction
takes two clock cycles (cycles 4 and 5). It causes the pipeline to stall for one
cycle, because both instructions I2 and I3 require access to the register file
in cycle 6.

» Even though the instructions and their data are all available, the pipeline is
stalled because one hardware resource, the register file, cannot handle two
operations at once. If the register file had two input ports, that is, if it allowed
two simultaneous write operations, the pipeline would not be stalled. In
general, structural hazards are avoided by providing sufficient hardware
resources on the processor chip.

——a= Time
Clock cycle 1 2 3 4 5 6 7

Instruction

I F, D, E, W,

I» (Load) F D, E | M | W,

I F D; E i

; =1 L=

I Fs Ds
Figure 8.5 Effect of a Load instruction on pipeline timing.

It is important to understand that pipelining does not result in
individual instructions being executed faster; rather, it is the
throughput that increases, where throughput is measured by the rate
at which instruction execution is completed.

The pipeline stalls, causes degradation in pipeline performance.

We need to identify all hazards that may cause the pipeline to stall
and to find ways to minimize their impact.

Dr Ajay V G, Dept. of CSE,SVIT

