What is data structures? What are the different types of data structures?

Definition: The study of
o how the data can be collected and stored in main memory during execution

e how the data can be represented, Names Marks Grade

e how efficiently the data can be retrieved and manipulated Alol| AMITABH | 100
and the possible ways in which different data items are logically related Al1]|SACHIN
is called data structure. The data structures are classified into :

ARJUN

e how the data is organized or how the data is categorized

Al2]

——> Primitive data structures

A[3] 103
——> Non-primitive data structures A4 |MODI 104

n=>5
arranged in ascending order

What are primitive data structures?
Definition: The data structures that can be manipulated directly by machine instructions are called primitive data

structures. The primitive data structures are fundamental data types that are supported by any programming language.

For example,
integers (int)

floating point numbers ( float)
characters (char)
double values ( double)

H pointers

are all primitive data structures in C language.

What are non primitive data structures?
Definition: The data structures that cannot be manipulated directly by machine instructions are called non-primitive data

structures. The non-primitive data structures are created or constructed using primitive data structures.

For example,
arrays

stacks
queues
linked lists

trees

are all non-primitive data structures in C language.
What are the operations that can be performed on data structures?

The various operations performed on data structures are:
m Traversing
m Inserting
B Deleting
m Searching
m Sorting

What is traversing? |
Definition: The process of accessing each item exactly once so that it can be processed and manipulated is called traversal.

For example, after traversing al0] [1] [2] [3] [4]
B Print array elements // Output: 10 20 30 40 50 |1() |20 |30 |4[) |50 | n=>5
B Display each item in the list / Output: 10 20 30 40 50 A

First

10 ;—|—>|20| T>{30] F[a0] F[50]]

1000 2000 3000 4000 5000




When we use structures?

H An array is a collection of similar type of data items. Using arrays and other programming constructs, we can handle
variety of situations.

B But, in real world, we can deal with entities that are collection of dissimilar data types. For example,
» Name of the student (string type)

» Marks scored (integer type)

P Average marks (float type)

m Since, the above information is a collection of dissimilar data types, arrays cannot be used. In this situation, the
structures are used.

m So, whenever we want to have a collection of similar or dissimilar data items that are logically related then we use
structures.

What is a structure? What is the syntax to define a structure?
Definition: A structure is a collection of one or more declaration of variables of same data type or dissimilar data types,
grouped together as a single entity.

B The variables defined inside the structure are called members of the structure or fields of the structure.
m All members are logically related data items.

m All the members can be accessed using a common name. It is a derived data type in C.

m struct is a keyword.
struct
typel member 1; E member 1, member 2, etc., are the variables defined inside the structure.
type2 member 2; They are called members of the structure or fields of the structure.
g L

B Semicolon is must at the end of the definition.

For example, a student information to be grouped may consist of

struct
m name of the student //array of characters char name[20];
® marKks scored //integer int marks;
m average marks scored //float 3 float average;
Note:

m We know that all the variables are defined in the beginning of the function or before the function definition.

m On similar lines, the structures also should be defined either in the beginning of the function or before the
function definition.

What are the different types of structures?

The structures can be classified as shown below:

——> Tagged structure ( Named structure )

——> Tagless structure

(Name less or Un-named structure )
——> Type defined structure

What is tagged structure? How to define tagged structure?

Definition: In the structure definition, the keyword struct can be followed by an identifier. This identifier is called tagname,
m  The structure definitionassociated with tagname is called tagged structure or named structure.
m  The syntax of tagged structure is shown below:

s{truct tag_name

struct student

typel member 1;

char name[10];
type2  member 2; int marks;
o o ORI float average,
’ Hg




What is structure declaration? How to declare structure variables?

® By defining a structure, memory will not be reserved for members of a structure.

m Memory will be allocated for members of a structure, when the structure definition is associated with variables.

m The process of reserving the space for members of a structure is called structure declaration.

Syntax: | Example: |

struct tag name s{truct student
typel member 1; char  name[10];
type2 member 2; int marks;
L teeetes eeesesseeeen float average,
} s Hg

struct tag mame vl, v2, .... VI;  structure declaration  struct student cse;

How and when memory is allocated for a structure?

® A block of memory is allocated for structure variables.
® The memory for each member of a structure is allocated in the order specified within the braces.

m The size of block is the sum of individual sizes of all members of the structure.

cse Exampl I

0 1 2 3 4 5 6 7 8 9
struct student
name AR {
marks char name[10];
average 18 bytes int marks;
float average;
e

struct student cse;
How to initialize tagged structure?

Structure initialization: The process of initializing the members of a structure is called structure initialization. During

initialization, all the data items must be enclosed within bracesi.e., ‘{‘ and ¢}’ and are separated by commas.

Syntax: struct tagname variable= { vl, v2, .....vn};

struct  student 0 1 2 3 4 5 6 7 8 9

¢ char name[10]; name | r | a | m I \0 | | | | | | |
int marks; 2| marks mmm
float average, average m m m @

s

struct  student a {“ram”, 25, 24.5};
struct  student b = {“mam”,24, 23.5};

0 2
name |m|a|m|\0| | I | I | |
b marks mmm
average mmm' 3.5




What is tagless or un-named structure? How to define tagless structure?

Definition: In the structure definition, the keyword struct is not followed by an identifier.

m That means, there is no tag associated with the structure.

m The structure definition without tagname is called tagless structure or un-named structure or nameless structure.

B The syntax of tagless or un-named structure is shown below:

Syntax: |

struct

Example: |

struct

typel member 1;

char name[10];
type2 member 2; int marks;
g float average;
s

12
What is structure declaration? How to declare structure variables?

m By defining a structure, memory will not be reserved for members of a structure.

B Memory will be allocated for members of a structure, when the structure definition is associated with variables.

m The process of reserving the space for members of a structure is called structure declaration.

struct

struct

typel member 1;

char name[10];
type2 member 2; ATRS

b vl, V2, .... vn;

float average;

How and when memory is allocated for structure variables?

m Ablock of memory is allocated for structure variables.

m The memory for each member of a structure is allocated in the order specified within the braces.

m The size of block is the sum of individual sizes of all members of the structure.

cse
01 2 3 4 5 6 78 9 grruet
name | | I | | | char name[10];
marks int marks;
average float average;
18 bytes 3 cse;

How to initialize one tagless structure?

Structure initialization: The process of initializing the members of a structure is called structure initialization. During

initialization, all the data items must be enclosed within braces i.e., ‘{° and ‘}’ and are separated by commas.

{S"““ 01 2 3 4 5 6 7 8 9

char  name[10]; name |rja mjw| | | | | | |

int marks; 7 | marks m m m m
float average; average m m m 24.5

} cse = {“ram”, 25, 24.5};




How to initialize more than one variable?

Structure initialization: The process of initializing the members of a structure is called structure initialization. During

initialization, all the data items must be enclosed within braces i.e., ‘{‘ and ‘}’ and are separated by commas.

only one variable is initialized

struct 0 1 2 3 4 5 6 7 8
EE— wme [ [ [T [ [ [ ]
int marks; a marks I:EI:I:'
float average; average I:I:I:I:l
} a,b = {“ram”, 25, 24.5};
0 1 2 3 4 5 6 7 8
Jpeme [rlamio] | ] ] ] |
marks mmmm
average mmmm

0 1 2 3 4 5 6 7 8
struct name I r |a |m |\0 | I | | I |
{ char name[10]; marks mmmm

int marks; average mmmm
float average;
} a = {“ram”, 25, 245}, b= {“ham”, 25, 24.5 };
01 2 3 4 5 6 7 8
bname |h|a|m|\0| | | | | |
marks mmm
average mm m 24.5

What is type defined structure? How to define typedefined structure?

Definition: In the structure definition, the keyword struct is not followed by an identifier.

m Itis a type of tagless structure. But, it is preceded by keyword typedef.

B The structure definition with the keyword typedef is called type defined structure.

m The type defined structure must be followed by an identifier ending with semicolon.

m This identifier acts as a data type. Using this type defined structure, we can declare variables.

TYPEID V1, V2, ....
What are the different methods using which structure variables can be defined using

typedef?

vn;

Example: |

typedef struct typedef struct

{ {
typel member 1; char name|[10];
type2 member 2; int marks;
.................... float average;

} TYPEID; } STUDENT;

STUDENT cse;



Method 1: Using tagged structure a structure variable

can be declared as shown below:

struct student

char name[10];
int marks;
float average;

typedef struct student STUDENT;
STUDENT
STUDENT

cse;
ise;

How to initialize type-defined structure?

Method 2: Using type-defined structure a structure variable

can be declared as shown below:

Example: |

Eypedef struct

char name[10];

int marks;

float
} STUDENT;

average;

STUDENT cse;

typedef struct 0 1 2 3 4 5 6 7 8 9
U nemeo ™™ lrlajmfwf | | | | [ |
int marks; marks mmm
float average; average m m m 24.5
} STUDENT;
STUDENT a = {“ram”, 25, 24.5 };
STUDENT b = {“sam”, 24, 23.5 };
01 2 3 4 5 6 7 8 9
mame | s |amjw| | | | [ | |
b marks mmm
average [00 | 00] 00 b33

How to initialize structure variables partially?

wwerage (o0 J00 Jo0 [o0]

typedef struct
{ name
char name[10];
. a | marks
int marks;
float average;
} STUDENT;
STUDENT a = {“ram” };
STUDENT b = {“sam”,

24, 23.5, 235 };

t t ¢

// Error

// The number of initial values should not exceed the number of members

STUDENT c = {24,235 };

/! Error

There is no way to initialize members in the middle of a structure without initializing the

previous members.

Is it possible to initialize the members without declaring the variables?

Consider the following program segment:

py— typedef struct
¢ char name[10]= “RAMA”; // Error
int marks =100; // Exrror
float average = 14.5; // Error

} STUDENT;



Note: It is not possible to initialize members without declaring a structure variable
What is pointer to a structure?

Definition: A variable which contains address of a structure variable is called pointer to a structure. For example,

in the following program segment, the variable p holds the address of a structure variable. So, the variable p is

pointer to a structure.

*&a
N N
typedef struct
char name[10]; P . name  1000|r|am\0 | | I | | |
int  marks; ‘marks 1010| 0000002
float average; average 1014
) STUDENT, 0986 g 0000024.5

STUDENT a= {“ram”,25, 24.5};
STUDENT *P5
p- &a

The members of a structure can be accessed using following ways:
m  Using dot operator denoted by -
m Using de-referencing operator and dot operator denoted by + and .

= Using arrow operator denoted by > R

How to access the members of a structure using * and . operator?

= A member of a structure can be accessed by writing * followed by pointer variable but enclosed within parentheses

followed by a dot and member name. SYNTAX: (*pointer_variable) . member

#include <stdio.h >
a

void main ()
{ . P

typedef struct
char name[10]; _ P |mame 1000|r|ajm\0 [T]11]]
int  marks; _.> marks 1910/ 0000002
float average; average 1014 4

g, 0986 g 0000024.5

STUDENT  a= {“ram”,25, 24.5};
STUDENT *P5
p = &a;

printf (“%s”, (*p).name);
printf (“%d”, (*p). marks);
printf (“%f”, (*p).average );

www.saividya.ac.in

How to access the members of a structure using arrow operator? |

= A member of a structure can be accessed by writing pointer variable followed by arrow operator in turn followed by

member name. SYNTAX: pointer_variable - member

#include <stdio.h >
a

void main ()
{ a P

typedef struct
char name[10]; i ll’ i name  1000|r | a{m[\0 | | | I | |
int  marks; ‘marks 1010| 0000002
float average; 0986 average 1014 4

} STUDENT; 8 |00b0li2 S




STUDENT a= {“ram”,25, 24.5};
STUDENT *P5
p- &a;

printf (“%s”, p— name);
printf (“%d”, p— marks);

printf (“%f”, p->average);

badma Reddv A 25 Vidva Institute of Techn: 2. salore | dow ad- www.saividya.ac.in

What is the size of a structure?

E A block of memory is allocated.

u The memory for each member of a structure is allocated in the order specified within the braces.

m The size of a block is sum of individual sizes of members

£5€
0123456789 ?truct student
name 2000 [ 1111 ]| |10bytes char  name[10];
grade 2010 01 bytes char grade;
average 2011 04 bytes float average;
weight 2015 | | | | 08 bytes _ double  weight;
2023 23 bytes B
struct student cse;

Note: The address of any member is greater than address of its previous member
What is the concept of slack bytes?

B A block of memory is allocated.

m The memory for each member of a structure is allocated in the order specified within the braces at word boundaries.

m The size of a block is sum of individual sizes of members and number of slack bytes.

cse
012345678910 15 ?‘“‘“ student
name 2000 char name[10];
|grade 2016 23 char grade;
average 2024 31 float average;
weight 2032 double  weight;
2040 23 bytes e
+17 bytes struct student cse;
40 bytes

m In the structure definition, double is the largest data type with size 8 bytes. So, the starting address of each member
should be divisible by 8.

m In some machines, the memory for the members of a structure is allocated at certain boundaries called word boundaries.

m In such cases, extra bytes are padded at the end of each member whose size is less than the size of largest data type
so that the address of each member starts at word boundary.

m  The extra bytes that are inserted at the end of each member are called slack bytes.

Note: The slack bytes are shown using black boxes in the above figure.’



What is the advantage/disadvantage of slack bytes?

The slack bytes do not contain any valid information and are useless wasting the memory space.
m In this situation, the size of structure may be greater than the size of individual members.

m But, the advantage is that data accessing at word boundaries is very fast.

m  The size of a structure may be equal to the size of individual members. In such case, no slack bytes are used.

What are the operations that can be performed on structures?

The various operations that can be performed on structures are:

——> Copying of structure
——> Comparing members of a structure

——> Arithmetic operations on structures

m Itis possible to assign a member of one structure to member of another structure if the type of those members is same.

a.marks = c.marks; /1 OK
a.marks = c.average; // ERROR
a.name = c.name; // ERROR

How a structure can be copied?

m A copy of a structure can be obtained using assignment operator.

B But, one structure can be assigned to another structure of same structure type.

\ Examglel: ‘ Example2:

struct struct
{ char name[10]; { char name[10];
int marks; int marKks;
float average; float average;
} a, b; } e d;
a=b>b; //OK ¢ =d; //OK a=c; //Error
= a; //OK d=c¢; //OK a =d; // Error
¢ =b; // Error

d = a; // Error

Note: Even though the members of both structures are same in number and type, both structures are considered to be
different.
m Itis possible to assign a member of one structure to member of another structure if the type of those members is same.

a.marks = c.marks; // OK
a.marks = c.average; // ERROR
a.name = c.name; // ERROR

strepy (a.name, c.name); /I OK



How to compare two structures?

B Comparing two structures is not allowed.

Examplel: | Example2: |

struct struct

{ char name[10]; { char name[10];
int marks; int marks;
float average; float average;

} a, b; } ¢ d;

if (a==b) /I Error if (c==d) /I Error

if (a!=b) /I Exrror if (al!=d) /I Exrror

m However, comparing members of different structures is allowed.

if (a.marks == c.marks)

if (a.name == c.name )

/I OK
// ERROR

if (strcmp(a.name, c.name) == 0 )// OK

How arithmetic operations are performed in a structure?

B Arithmetic operations on two structures is not allowed.

B However, arithmetic operations are allowed on members of a structure.

Example: |

Example2: |

struct ?tr““

{ char name[10]; char name[10];
int marks; int marks;
float average; float average;

}a, b; } ¢ d;

For example,
int marks;
marks = a.marks + c.marks; /I OK

| Paste &

What is nested structure?

typedef struct

Definition: A structure inside a structure is called nested structure. As we declare variables

inside a structure, a structure can also be declared inside a structure. So, a structure whose

int markl1;

int mark?2;

int mark3;
} MARKS ;

typedef struct

char name[10];
MARKS m;
float average;

} STUDENT ;

STUDENT a;

member itself is a structure is a nested structure.

For example, the structure STUDENT is a nested structure.

m

Name [Markl Mark2 Mark3| Average

name

a

arkl
ark2

ark3

average




How to initialize the members of a nested structures?

typedef struct B The variable in the declaration must be followed by ‘=* sign and followed by data items.
edef struc

{ int markl; m The data items that are to be initialized must be separated by commas.
int mark2; . e el 1. s
int mark3; m The data items that are to be initialized must be enclosed within braces.

} MARKS ; m The data items thus initialized are stored in memory as shown below:

typedef struct

char name[10];
MARKS m;
float average; m
} STUDENT ; Name [Markl Mark2 Mark3 | Average

a

name _|rjampo| | | | | | |
mark1 0000 00/25

m fmark2 00D0{0024
ark3 (00000 23
average pOPO )98.5

STUDENT a={ “ram”,
{25, 24, 23},
98.5

}s

How to access the members of a nested structures?

B The data stored in each member can be accessed using dot operator as shown below:
typedef struct

. a-name // ram
int markl;
int mark?2; a.m - markl /125
int mark3; a.m - mark2 // 24
} MARKS ; a.m - mark3 /23
typedef struct a.average /1 98.5
char name[10];
MARKS m;
float average; m
} STUDENT ; Name |Mark1 Mark2 Mark3| Average
a
name _|r|ajmo| | | | | | |
mark1 000 00|25
m lmark2 0000 /0024
ark3 000000 23
average pOpO )98.5
How to read the information of students?
void read_student_info ( STUDENT a([], int n)
typedef struct { int i
int markl; printf (“Name markl mark2 mark3 average\n”);
int mark2; for(i= 0:i < n: i++
int mark3; or(i= 051 n; i)
} MARKS ; scanf (“ %s %d %d %d %f %, a[i].name,
&alil.m.markl, &ali].m.mark2,
typedef struct ) &ali].m.mark3, &ali].average) ;
char name[10]; }
MARKS m;
float average; m
} STUDENT ; Name |Mark1 Mark2 Mark3| Average
a[0)]= RAMA 90 90 87 89.0
a[l]= BAMA 85 85 85 85.0
al2] = SOMA 95 95 92 94.0
a[3] = MAMA 98 98 95 97.0
a4 = YAMA 97 97 94 96.0

n= 5§



How to sort the student details in increasing order of average marks?

typedef struct

int markl;

int mark?2;

int mark3;
} MARKS ;

typedef struct

char name[10];

MARKS m;

float average; . . .
} STUDENT ; [l // Input:array a with n items

vj=1ton-1

vi=0to n-(j+1)

if (a[i] > a[i+1])
temp = ali];
afi] = a[i +1];

} afi + 1]= temp;

void read_student_info ( STUDENT a|[], int n)

{ int i
printf (“Name markl mark2 mark3 average\n”);
for(i= 0;i < nj; it+)

scanf (“ %s %d %d %d %f “, a[i].name,
&ali].m.markl, &al[i].m.mark2,

} &ali].m.mark3, &ali].average) ;
}
void sort_student_info (STUDENT a[], int n)
int i, j; STUDENT temp;
for(j=1; j < my jtt)

for(i=0; i < n-j; itt+)
if (a[i].average > a[i+ 1].average)
temp = ali];
afi] = a[i+1];
} ali+1] = temp ;

}}}

The complete program to read student inform, sort student info and to print student info can be written

as shown below:

#include <stdio.h>

void main ()
typedef struct

int markl; STUDENT  a[10];
int mark?2; int n;
int mark3;
} MARKS ; printf ( “Enter no. of students : “);
+ 9

scanf ( “%d”, &n);

typedef struct .
read_student_info ( a, n);

char name[10]; .

MARKS m; sort_student_info ( a, n);

fl(?at . average, print_student_info(a, n);
} STUDENT ; } - -

void read_student_info ( STUDENT a[], int n)

{ int i
printf (“Name markl mark2 mark3 average\n”);
for(i= 0;i < nj itt)

scanf (“ %s %d %d %d %f “, a[i].name,
&ali]l.m.markl, &al[i].m.mark2,

void print_student_info (STUDENT a[], int n)

{ int i
printf (“Name markl mark2 mark3 average\n”);
for(i= 0;i < n; itt+t)

printf (“%s %d %d °,d %f \n“, a[i].name,
afi].m.mark1, ali].m.mark2, a[i].m.mark3,
} afi].average ) ;

Can a structure contain array as a member name?

} &alil.m.mark3, &ali].average) ;
}
void sort_student_info (STUDENT af], int n)
{
int i, j5 STUDENT temp;
for(j=1; j < n; j+t+)
for(i=0; i < n-j; it+)
if (a[i].average > a[i+ 1].average)
temp = afi];
afi] = a[i+1];
} afli+1] = temp ;
}
y 3

Yes. Definitely a structure can contain an array as the member name. Consider the following structure.

marks
typedef struct name [0] [1] [2] average
char  mame[10]; [R|a|M A0 | | | | [ododoorolododoozofoobobo3oododozp.o
int marks[3];
float average; a
} STUDENT ;
STUDENT a= {“RAMA”, {10, 20, 30}, 20.0};

B The variable in the declaration must be followed by ‘=° sign and followed by data items.

m The data items that are to be initialized must be separated by commas.

m The data items that are to be initialized must be enclosed within braces.

Note: The members “name” and “marks” are arrays inside the structure “STUDNT”.



How to initialize the members of a structure when structure has array as the member name? A structure
having array as the member can be initialized as shown in program segment below:

marks
typedef struct name [0] 1] [2] average
char  name[10]; [Rja[m alvof | | | | [ododootofodoaoo20}0000po30fodooo2p.o
int marks[3];
float average; a
} STUDENT ;

STUDENT a= {“RAMA”, {10, 20, 30}, 20.0};

B The variable in the declaration must be followed by ‘=° sign and followed by data items.
m The data items that are to be initialized must be separated by commas.

m The data items that are to be initialized must be enclosed within braces.

B The data stored in each member can be accessed using dot operator as shown below:

a-name /| RAMA
a. marks[0] /1 10

a- marks|[1] // 20

a. marks[2] /130
a-average //20.0

How to initialize the structures having arrays as member name? The structure having array name as

member can be initialized as shown below:
marks

name [0] [1] [2] average

typedef struct

char  mame[10] a[0]=[[RAMA | [ 90 90 | 87|[89.0 |
int marks[3]; a[l] = |BAMA | 85|85 | 85||85.0
, STT?:ENT ;average’ a2l =|[soma | [95] 95] 92][94.0
al31=[MAMA | |98 98 [ 95|[97.0

JrupENT all = a4l =[[vama | [97][97 ] 94 |[96.0 |

{“RAMA”, {90, 90, 87}, 89.0},
{“BAMA”, {85, 85, 85}, 85.0}, k
marks
{“SOMA” , {95, 95, 92}, 94.0},
name [0] [1] [2] average
{“MAMA”, {98, 98, 95}, 97.0}, a[0)] = RAMA 90 90 87 89.0

y,  (FYAMAT, {97, 97, 943, 96.0} all]= BAMA 85 85 85 85.0

The complete program to read the student info, sort the student info and to print the student info can be
written as shown below:

#include <stdio.h> void main () void print_student_info ( STUDENT a[], int n)
tvoedef struct STUDENT  a[10]; U int i j;
yp Int n; printf (“Name marksl marks2 marks3 average\n”);
char name[10]; printf ( “Enter no. of students : “); for (i = 0; i< nji++)
int marks[3]; scanf ( “%d”, &n); { ’ ’
1 €0, (13 i .
float average; read_student_info (a, n); printf (“%s <, ali].name) ;
. . . for (j = 0; j<3; j++)
} STUDENT ; sot.'t_tstl:d:nt_tll}f(; (a,n); prin;f (« %(’1“, ali]. marks[j] ) ;
) print_student_info(a, n); \ printf (“%f ¢, &alil.average) ;

void sort_student_info (STUDENT af], int n) }

int i, j5 STUDENT temp; void read_student_info (STUDENT a[], int n)

for (j=1; j < m; j++) Uint i, js

for(i=0; i < n—j; it++) printf (“Name markl mark2 mark3 average\n”);

for (i =0; i <mnj;itt+)

if (a[il.average > a[i+ 1].average)

temp = ali];
afi] = a[i+1];
a[i+1] = temp ;

{

scanf (“ %s*, a[i].name) ;

for (j =05 j<3;j++)
scanf (*%d*%, &ali]. marksl[j]) ;

scanf (“ %f “, &ali].average) ;




What are the different ways of passing structures/members to functions?

The various ways to pass structure or its members to the functions:

——> Passing members of a structure

—> Passing the structures

——> Passing the address of structures
How to pass structure members as parameters?

#include <stdio.h> " 3 4 void main()
?pedef struct % 3 * Cl FRACTION a, b, ¢;

int. m ¢ a b printf (“Fraction1:(x/y)”);

int 4 a[12] | _ [n a4 scanf (“%d/%d”, &a.n, &ad );
} FRACTION; d m d n d printf (“Enter fraction2:(x/y)”);

scanf (“%d/%d”, &b.n, &b.d );
int multiply (int x, int y)

cn
return x*y; c.d

multiply (a.n, b.n );
multiply (a.d, b.d );

printf ( “Result = %d/%d”, c.n, c.d);

Disadvantages

The return address and the values of actual parameters are pushed on to the stack (Last in first out data structure).
m As the number of actual parameters increases, the size of the stack also increases.

B As the size of stack increases, the memory space utilized also increases.

m Hence, it is not a good practice to pass the members. It is not a good programming style and performance decreases.
m This method is inefficient as the number of members increases and require more memory.

www.saividya.ac.in

How to pass structure to a function?

#include <stdio.h> void main()
?pedef struct FRACTION a, b, ¢;
it m c a b printf (“Fraction1:(x/y)”);
int  d; n _|n . |nl4 scanf (“%d/%d”, &an, &ad );

FRACTION;
; ’ d m d n d printf (“Enter fraction2:(x/y)”);
scanf (“%d/%d”, &b.n, &b.d);

FRACTION multiply (FRACTION x, FRACTION y)

¢ = multipl a, b);
¢ FRACTION z; Pl ( )

z.n = X'n* y .n; printf ( “Result = %d/%d”, c.n, c.d
zd = x-d=* y.d; }

) return z;

Disadvantages

m When a function is called the entire structure will be pushed on to the stack.

m The size occupied by the structure on the stack is equal to the sum of sizes of individual members. So, more time is
required for copying it into stack and hence efficiency of the program decreases.

Note: The above disadvantages are overcome by passing addresses of structures as actual parameters.

%l How to pass address of a structure to a function?
#include <stdio.h> void main()
typedef struct FRACTION a, b, ¢;
{ int n c a b printf (“Fractionl:(x/y)”);
int 4 n _|a a4 scanf (“%d/%d”, &an, &a.d );
} FRACTION; d m d n d printf (“Enter fraction2:(x/y)”);

scanf (“%d/%d”, &b.n, &b.d );



FRACTION multiply (FRACTION *x, FRACTION *y)

¢ = multiply (&a, &b);
¢ FRACTION z; ply ( )
zn = (*x)'n * (*y).n; printf (“Result = %d/%d”, c.n, c.d
zd = (¥x)-d * (*y).d;
) return z;

The above function multiply can also be written using array operator as shown below:
FRACTION multiply (FRACTION *x, FRACTION *y)

{ FRACTION z;
zZn = XxX->n % y->n;
zd = y-=>d=* y->d;
} return z;

What are the advantages of using structures?

m Structures are used to represent more complex data types. For example, derived data types such as FRACTION,
COMPLEX etc can be easily represented using structures.

typedef struct typedef struct

{ int n; 3 { int 13 3 + 8i
int d& 8 int i

} FRACTION; a } COMPLEX; a

FRACTION 3; n COMPLEX 3;
d i

m Related data items of same data type can be logically grouped under a common name.

typedef struct m
int markl; markl Markl Mark2 Mark3
int mark2;
int, mark3; mark?2

} MARKS ; mark3

MARKS m;

m Related data items of dissimilar data types can also be logically grouped under a common name. For example,

typedef struct 2
char name[10]; name | | | | | |
int  marks; marks
float average; average

} STUDENT; &

STUDENT a;

m A function always returns a single value. When we want to return more than one value, we use structures.

m Extensively used in applications involving database management.

How to represent a complex number in C? A complex number 3 + 8i can be represented using structures
as shown below:

Mathematical C Representation
typedef struct Representation a
int, i ro i
} COMPLEX;
COMPLEX read_complex ()
The function to read a complex number can be written as: {

COMPLEX a;
scanf (“%d %d*“, &a.r, &a.);

} return a;



The function to print a complex number can be written as shown below:

void print_complex (COMPLEX a) 3+81

{
printf (“%d %, a.r); RIENERI A
if(ai>0) ri

printf (“+%di% a.i);

e
printf (“%d i %, a.i);

The program to read a complex number, print a complex number and to add two complex numbers can
be written as shown below:

COMPLEX add_complex( COMPLEX a, COMPLEX b)
{

#include <stdio.h>

typedef struct COMPLEX ¢; Caeas
int 13 cr = ar + br; a=3+4i
i ci = ai + bi; b=4+2i
int i - '
} C&ClPLEX- } return c; c=T7+61i
COMPLEX read_complex () jold main ()
{ COMPLEX a; COMPLEX a, b, c;
seanf (“%d %d“, &a.r, &a.); printf (“Enter complex number 1: »);
ARG ) Ly o) 9 a - W ();
} return a;

printf (“Enter complex number 2: ”);

. . b = read_complex ();
void print_complex (COMPLEX a)

{ - ! :
printf (“%d %, a.r); ¢ = add_complex (a,b);

if(ai > 0) printf (“a= “); print_complex (a) ;

Wm@oq%u “ ai); printf. (“b=“);  print_complex (b) ;

printf (“c= “);  print_complex (c) ;

e
printf (“%d i, a.i); }

Write a C program to search for given student name in a student record consisting of name and marks

The given student called “key” has to be compared with all records as shown below:

typedef struct Design Names Marks Grade
char  name[10]; Al0]
int marks; A[1]
char grade; key = BABA Al2]

} STUDENT ;

A3

/|

Al4]

The algorithm and equivalent code can be written as shown below:

int search( char key [|], STUDENT af[], int n)
Design {
int i

[l // Input: key, array a with n items

Vi=0to n-1 {or(i=0;i<n; it++ )

C if ( key == AJi].name ) return i if (stremp (key, alil.name) == 0)
return i;
return -1
) return -1;

The complete C program to search for a given key in an array of student records can be written as shown
below:



How to search for an item in an array of structures?

void read_student_info ( STUDENT a|[], int n)
{

#include <stdio.h >

#include <string.h> int i

typedef struct for(i= 0;1 < n; it++)
char name[10]; scanf (¢ %s %d %c”, a[il.name, &a[i].marks, &a[i].grade) ;
int marks; }
char grade; void main ()

} STUDENT ;

int n, pos; char key[10]; STUDENT a[10];

) . printf (“Enter number of students : ) 3
int search( char key [], STUDENT a[], int n scanf (% %d ”, &n) ;

{ int i printf ( “Name Marks Grade\n“ ) ;

. . . read_student_info (a, n);
for(i= 0;i < n; itt)

printf (“Enter key to search:\n” );
if ( stremp ( key, a[i].name) == 0) scanf (” %s”, key);

return i; pos = search(key, a, n);

if ( pos != -1
printf ( “Successful search\n” );

printf ( “Unsuccessful search\n”);

) return -1;
else

Write a program to print student information who got above average marks and who got below average
marks separately.

The structure representation is shown below:

typedef struct

{ char name[10];
int marKks;
} STUDENT;

The student record where number of students n = 5 is shown below:

A[0]
A[l]
Al2]
A[3]
Al4]

The algorithm to find the average can be written as shown below:

o Input: array a with n students

sum = 0

sum = sum + afilmarks |[Vi= 0to n-1

return sum / n

The complete program to print the student info who got more than average marks and who got less than
average is shown below:



How to print student details who are above and below average?

#include <stdio.h > void read_student_info (STUDENT a[], int n)
typedef struct { int i
{ char  name[10]; for(i= 0;i < m; it+)
int marks; ) scanf (“ %s %d”, a[i].name, &a[i].marks) ;
} STUDENT;
void print_student_info (STUDENT a[], int n) f{l"at find_average( STUDENT a], int n)
{ int i; int i;
float sum;
float average;

sum = 0;

average = find_average(a, n); )
for(i= 0;i < n; i++ ) sum += a[i].marks;

printf (“Marks Names above %f ”, average) ;
return sum / n;

for(i= 0;i < n; i++) }
if ( a[i].marks > average) void main ()
) printf (“%d %s”, a[i].marks, a[i].name) ; int n; STUDENT  a[10];
pl'illtf ( “Marks Names below %f ”’ average) ; pl'illtf ( “Enter number of students : « ) 5

scanf ( “ %d ”, &n) ;

. . printf ( “Name Marks \n“) ;
if (a[i]l. marks < average) read_student_info (a, n); ’
printf (“%d %s”, a[i].marks, a[i].name) ;

for(i= 0;i < n; itt)

print_student_info (a, n);

What is union? What is the syntax for defining union?

Definition: A union is a collection of one or more declaration of variables of same data type or dissimilar data types,
grouped together as a single entity.

m The variables defined inside the union are called members of the union or fields of the union.

m All members can be accessed using a common name. It is a derived data type in C.

For example, a student information to be grouped may consist of

> name of the student /larray of characters
> marks scored //integer
> average marks scored //double
union union
{
typel member 1; char name[20];
type2 member 2; int marks;

.................... float double;
|5 35




What is tagged union? What is the syntax?

Definition: In the union definition, the keyword union can be followed by an identifier.
B This identifier is called tag name.

m The union definition associated with tag name is called tagged/named union.

Syntax: | Example: |

union tag name union student

{ typel member 1; { char name[10];
type2 member 2; int marks;
....... double average;

1 ¥

union tag name v1, v2, .... vn; union student cse;

How memory is allocated for union?

B A block of memory is allocated.

m The memory allocated by the compiler is large enough to hold the largest member of the union.
m So, the size of block is the size of the largest member of the union.

ICL' All the members share the same set of filemory locations.

T "] 4 A.I any noint of timu gnH; one member can bhe accessed and Lr i EE‘EB!E ‘
1Jcliange of one membper aﬂects the other member. f

union student
01 2 3 4 5 6 7 8 9 {
char name|[10];
HEEEEEEEEN e el
<— marks _>l LU 5
¢———— average — > . double average;
e — union student cse;

cse

What is tagless union or unnamed union?

Definition: In the union definition, the keyword union is not followed by an identifier.
m That means, there is no tag associated with the union.

m The union definition without tag name is called tagless union.

m Since, there is no name associated with keyword union, it is also called name less union or unnamed union.

Syntax: | [Example: |

union union
{
typel member 1; char name|[10];
type2 member 2; int, marks;
....... float average;
} vl V2, ...ovmg } cse;

How memory is allocated?

A block of memory is allocated.
The memory allocated by the compiler is large enough to hold the largest member of the union.
So, the size of block is the size of the largest member of the union.

All the members share the same set of memory locations.

At any point of time only one member can be accessed and |

change of one member affects the other member. W



What is type-defined union?

Definition: In the union definition, the keyword union is not followed by an identifier.
m It is a type of tagless union. But, it is preceded by a keyword typedef.
m The union definition with keyword typedef is called type-defined union. The type-defined union must be followed by

an identifier ending with semicolon.

m This identifier acts as a data type. Using this type defined union we can declare variables.

Syntax: | Example: |

typedef  union typedef union
{ {
typel member 1; char name[10];
type2 member 2; int, marKks;
.................... float average;
} TYPE_ID; } STUDENT;
TYPE_ID vl, v2, .... vm; STUDENT cse;

How memory is allocated?

A block of memory is allocated.
The memory allocated by the compiler is large enough to hold the largest member of the union.
So, the size of block is the size of the largest member of the union.

All the members share the same set of memory locations.

At any point of time only one member can be accessed and | =

change of one member affects the other member. W

How to initialize the members of union?

Method 1: Tagless union initialization

union 0 1 2 3 4 5 6 7 8 9
¢ char name[10]; 1000 | r | a |m |\0 | | | | | | |
int marKks; <— marks —i
double average; € average
} ese = {“ram”, 25, 245 }; «— name — 3
cse

Note: ® Only the first member of union can be initialized.

B It is not possible to initialize subsequent members of union

How to initialize the members of union?

Method 2: Tagged union initialization

union student 01 2 3 4 5 6 7 8 9
{ char name[10]; 1000 | r I a |m I\O | I | | | | I
int marks; <— marks —i
double average; (€ average
}s «— npame —m 5

union student a = {“ram”, 25, 24.5 }; cse



\ How to initialize the members of union?

Method 3: Type-defined union initialization

typedef struct

01 2 3 4 5 6 7 8 9
{
char name[10]; 1000 Irlaljlalrlalmlal\ﬂl I
int marKks; marks
double average; €«——— average
} STUDENT; ¢——— name ——— 5
STUDENT a = {“rajarama”, 25, 24.5}; cse
How to access the members of union?
Method 3: Type-defined union initialization
t f struct
{ypede”“c 01 2 3 4 5 6 7 8 9
char name[10]; 1000 | 00 00 00| 00| 00 |00 00 |0.4[\0 | |
int marks; marks
double average; «——— average
} STUDENT; e pame —

STUDENT a = { “rajarama”, 25, 24.5};

printf (“%s”, a .name); // rajarama

a .marks = 25;

printf (“%d”, a .marks ); //25
a .average = 0.4;
printf (“%f”, a.average); //0.4

cse

What are the differences between structures and unions?

Separate memory locations are allocated for every member
of the structure.

The memory is allocated and its size is equal to maximum
size of a member.

m Each member within a structure is assigned unique address

The address is same for all members

B The address of each member is greater than the address of
its previous member

The address is same for all members

B Altering the value of one member will not affect other
other members of the structure

Altering the value of one member affects other member
as the memory is shared.

B Several members of a structure can be initialized

Only the first member of the union can be initialized.

B Size of structure is >= sum of sizes of its members.
(Greater because of slack bytes)

Size of union is = size of largest member

cse cse .

struct 0123456789 01234567809 union
char name[10];| name 2000' | | I | | | | I | | 2000' I | | | | I I | | char name[10];
int k N | | | | | i k ;
:il:)uble :::'asge' merks 20 . ¢ marks | 10 bytes; :ll:)tuble ;lillr"asge'

} ese; " | average 2014' | I | I | | I | (_aver:%;le L5 | }cse |

www.saividya.ac.in



Chapter 12: Pointers

What are we studying in this chapter?

Pointers and address

Pointers and function arguments

pointers and arrays, address arithmetic

character pointer and functions

Pointer to pointer , Initialization of pointer arrays

Understanding complex declarations

dynamic allocation methods

Array of pointers and programming examples. - 7 hours

® & & & O o 0o

Example 12.1: Program to print the values using variables and their addresses

#include <stdio.h>
void main()

{ 4
int a=25; 25 45
int  b=45; 1000 1002
/* Accessing the data using variables */
printf(“Value of a = %d\n”, a); Value of a =25
printf(“Value of b = %d\n”, b); Value of b =45
/* Accessing the address of variables */
printf(“Address of a = %d\n”, &a); Address of a = 1000
printf(“Address of b = %d\n”, &b); Address of b= 1002
/* Accessing the data using de-referencing operator */
printf(“Value of a = %d\n”, *&a); Value of a =25
printf(“Value of b = %d\n”, *&b); Value of b =45

3

Note: Observe that the operator pair *& gets cancelled each other. So,
¢ *&ais same as a
¢ *&bissameasb

Now, the question is “Is it possible to store the address of a variable into memory?”.
Yes, it is possible. As we store the data using assignment operator, we can store
address of variable using assignment operator as shown below:



12.2 Pointers

p = &a; // Now, the variable p contains address of variable a
X = &b; // Now, the variable x contains address of variable b

Note: Please see that, the variables p and x in above two statements are not normal
variables, as they do not contain the data. Instead the variables p and x contain
addresses of the data. These variables p and x which contain the addresses are
called pointers or pointer variables.

Now, once we know what are pointer variables, the next question is “How fo declare
the pointer variables?” 1t is very simple and can be done as shown below:

If a variable p contains address of int variable its declaration is: int *;
If a variable x contains address of float variable its declaration is: float  *x;
If a variable y contains address of char variable its declaration is: char  *y;
If a variable z contains address of double variable its declaration is: double *z;

Note: The address operator can be used with any variable that can be placed on the
left side of an assignment operator. Since constants, expressions and array names
cannot be used on the left hand side of the assignment and hence accessing address is
invalid for constants, expressions and array names. The following are invalid:

Usage Valid/Invalid | Reasons for invalidity
&100 Invalid Address of a constant cannot be obtained
&(p +10) | Invalid Address of an expression cannot be obtained
&(p+q) Invalid Address of an expression cannot be obtained
int a[10];
&a Invalid Address of entire array cannot be obtained
register a;
Invalid Address of a register variable cannot be

&a .

. obtained

Definition: A variable that contains the address of another variable or address of a
memory location is called a pointer. A pointer is also called a pointer variable.

Once we know the concept of pointers, let us see “What are the steps to be followed
to use pointers?” The following sequence of steps have to be followed by the
programmer:

—> Declare a data variable Ex: int a;
Steps to be —> Declare a pointer variable Ex:int  *p;
followed while = S ' '
using pointers — Initialize a pointer variable Ex: p = &a;

—> Access data using pointer variable  Ex: printf(”%d”,*p);



C Programming Techniques = 12.3

¢ The variables along with pointer variables have to be declared in the beginning of
a function. These declarations can be in any order.

¢ Only point we have to remember is that before using pointers to access anything,
the pointers have to be initialized with appropriate addresses.

12.2.1 Pointer declaration and Definition

In C language, we know that all the variables should be declared before they are used.
Pointer variables also should be declared before they are used. In this section, let us
see “How to declare pointer variables?”” The syntax to declare a pointer variable is
shown below:

type * identifier ;

Name given to the pointer variable

v

The asterisk (*) in between type and identifier
tells that the identifier is a pointer variable

type can be any data type such as int, float,
char etc. It can be derived/user-defined data
type also.

v

For example,
¢ If a variable p contains address of int variable, its declaration is: int *p;

¢ [If a variable x contains address of float variable, its declaration is: float *X;
¢ Ifavariable y contains address of char variable, its declaration is: char  *y;
¢ Ifavariable z contains address of double variable, its declaration is: double *z;
¢ If avariable fp contains address of FILE variable, its declaration is: FILE *p;

Note: In the above declarations we say:
1) pisapointer to an int
2) xis a pointer to a float
3) yisapointer to a char
4) zis apointer to a double
5) Jp is a pointer to FILE (details are in FILE HANDLING: CHAPTER 14)

Example 12.2: In the declaration, the position of * is immaterial. For example, all the
following declarations are same:

int  *pa;

int * pa;

int*  pa;




12.4 Pointers

Any of the above declaration informs that the variable pa is a pointer variable and it
should contain address of integer variable.
Example 12.3: Consider the multiple declarations as shown below:

int*  pa, pb, pc;

Observe the following points:

¢ In the above declaration, most of the readers wrongly assume that the variables pa,
pb and pc are pointer variables. This is because * is attached to int.

¢ This assumption is wrong. Only pa is a pointer variable, whereas the variables pb
and pc are ordinary integer variables.

¢ For better readability, the above declaration can be written as shown below:

int  *pa, pb, pc;

Now, we can easily say that pa is pointer variable because of * operator, whereas
pb and pc are integer variables and are not pointer variables.
¢ It is still better if the variables are declared in separate lines as shown below:

int  *pa;
int pb;
int  pc;

12.2.2 Dangling pointers

In the previous section, we have seen the method of declaring a pointer variable. For
example, consider the following declaration:
int  *p;

This indicates that p is a pointer variable and the corresponding memory location
should contain address of an integer variable. But, the declaration will not initialize
the memory location and memory contains garbage value as shown below:

p ——+—> Garbage value

Here, the pointer variable p does not contain a valid address and we say that it is a
dangling pointer. Now, let us see “What is a dangling pointer?”

Definition: A pointer variable which does not contain a valid address is called
dangling pointer.



C Programming Techniques &= 12.5

Example 12.4: Consider following declarations and assume all are /ocal variables.

int  *pi; /* Pointer to an integer */
float *pf; /* Pointer to a float number */
char *pc; /* Pointer to a character */

¢ The local variables are not initialized by the compiler during compilation. This is
because, the local variables are created and used only during execution time.

¢ The pointer variables also will not be initialized and hence they normally contain
some garbage values and hence are called dangling pointers.

¢ The memory organization is shown below:

pi ——> Garbage value
pf ——> Garbage value
pe > Garbage value

The pointer variables pi, pf and pe does not contain valid addresses and hence they
are dangling pointers.

Note: Most of the errors in programming are due to un-initialized pointers. These
errors are very difficult to debug. So, it is the responsibility of the programmer to
avoid dangling pointers. Hence, it is necessary to initialize the pointer variables so
that they always contain valid addresses.

Example 12.5: Consider following declarations and assume all are global variables.

int  *pi; /* Pointer to an integer */
float *pf; /* Pointer to a float number */
char *pc; /* Pointer to a character */

All global variables are initialized by the compiler during compilation. The pointer
variables are initialized to NULL indicating they do not point to any memory
locations as shown below:
pi NULL
Pf [ NULL
P¢ NULL




12.6 Pointers

12.2.4 Initializing a pointer variable

Now, the question is “How to initialize a pointer variable?” Initialization of a pointer
variable is the process of assigning the address of a variable to a pointer variable. The
initialization of a pointer variable can be done using following three steps:

—> Step 1: Declare a data variable

———> Step 2: Declare a pointer variable

—> Step 3: Assign address of a data variable to pointer variable
using & operator and assignment operator

Note that the steps 1 and 2 can be interchanged i.e., we can first declare a pointer
variable, then declare a data variable and then initialize the pointer variable. The three
ways using which initialization can be done is described below:

Method 1: Declaring a data variable, pointer variable and initializing pointer
variable in separate statements. For example, consider the following three statements:

int x; /* Step 1: x 1s declared as an integer data variable */
int  *px; /* Step 2: px is declared as a pointer variable */

px =& X; /* Step 3: copy address of data variable to pointer variable */
Method 2:Declaring a pointer and initializing a pointer in a single statement: Using
this method, the above three statements can be written as shown below:

int X;
int Fpx=&x;
Method 3: Declaring a data variable, pointer variable and initializing a pointer

variable in a single statement: Using this method, the above two statements can be
written as shown below:

int X, *px = &x;

Example 12.6: Consider the following statements:

int  p, *ip;

float d, f;

ip=7p; /* ERROR: The ip should contain address of a variable */
ip = &d; /* ERROR: ip is pointer to int. But, it contains address of

double variable */



C Programming Techniques &= 12.7

ip = &p; /* OK */

Observe the following points:
¢ Consider the first statement:

ip=p;

Here, ip is a pointer to integer. It should contain the address. But, we are not
storing the address. Hence, it is an error.

¢ Consider the second statement:

ip = &d;

Here, ip should contain address of integer variable. But, we are storing address of
float variable. So, it results in error.

Now, let us write some programs using two pointers

Example 12.7: Write a program to add two numbers using pointers

PROGRAM TRACING

1. #include <stdio.h> |

2. I

3. void main() | Execution starts from main sum

4{ I 1 T T

5. inta=10, b =20, sum; | 2 10 b| 20 30
L\ /

6 I N N

7. int *pa, *pb; I /

8. |

9. pa= &a; | pa ! pb

10.  pb=&b; |

11. I

12.  sum = *pa + *pb; | sum= 10+ 20 =30

13. I

14. Output

15 printf(“Sum = %d\n”, sum); Sum = 30




12.8 Pointers

Example 12.8: Program to read two numbers and add two numbers using pointers

PROGRAM TRACING
1. #include <stdio.h>
2.
3. void main() | Execution starts from main
4 { I sum
' l T I
5. int a, b, sum; | a 10 b| 20 30
6 L\ /
I N AN
7. int *pa, *pb; | I \ /
> |
9. pa= &a; pa pb
10.  pb=&b; |
11. I Input
12.  scanf(“%d %d”,&a, &b); | 10 20
13. |a=10b=20 ,
14.  sum = *pa + *pb; | sum= 10+ 20 =30
15. Output
16.  printf(“Sum = %d\n”, sum); Sum = 30
17.}

Note: After executing statement 12, the values 10 and 20 which are read from the
keyboard are copied into memory locations identified by a and b. Then those values
are accessed using pointer variables pa and pb, added and result is stored in the
variable sum.

Note: In the statement in line 12 i.e., scanf(“%d %d”, &a, &b );

we are using &a and &b. In line 9 and 10, &a and &b are already copied into pointer
variables pa and pb. So, in place of &a and &b, we can use the pointer variables pa
and pb as shown below:

scanf(“%d %d”, pa, pb); /* Since pa contains &a, pb contains &b */

Note: there is no need of writing &pa and &pb, since pa and pb already contains the
addresses.

12.3 Pointers are flexible

The pointers are very flexible and can be used in variety of situations as shown
below:

¢ A pointer can point to different memory locations

¢ Two or more pointers can point to same memory location



C Programming Techniques &= 12.9

Altering functional arguments using pointers (Pointers and function arguments)
Functions returning pointers

Pointers to pointers

Arrays and pointers

Pointer can point to a single dimensional array

Arrays of pointers

Pointer can point to a function

® & 6 & O o o

12.3.1 A pointer pointing to different memory locations

A pointer can point to different data variables by storing the address of appropriate
variables. This can be explained using the following program segment:

int x=10,y=20,z=30;

int  *p;

Output lb X
p = &x; I '
@ printf(“%d\n”, *p); ://10 P :
| qg----- > 20 y
p=&y; oo I ® '
: «©Q 9 %k Y D T
printf(“%d\n”, *p); I//20 @ ..... |
NS T al 30 z
p = &z; I L

printf(“%d\n”, *p); !//30

Observe the following points:
¢ The pointer variable p contains the address of x. So, output is 10

@0 The pointer variable p contains the address of y. So, output is 20
@0 The pointer variable p contains the address of y. So, output is 30

It 1s observed from above example that the pointer variable p points to different
memory locations by storing the addresses of different variables. But, at any point of
time, p points to only one memory location. Thus, same pointer can be pointed to
different data variables.

12.3.2 Two or more pointers can point to same memory locations

. Variables Address
Consider the statements shown below: !

@ p 5000

|
I
|
int *p; q 5002 : —> Garbage value
|
I
|

> Garbage value

5004

-

int *q; —> Garbage value

x 5006 1;0




12.10 Pointers

int *r;
int x =10;
@ |
p = &x; p 5000 :
_ |
q=&x; q 5002 ,
|
r = &X; r 5004 !
X 5006 LS

printf(“&p =%u, p = %u, *p = %d\n”,&p, p, *p);  /* Output */

&p = 5000, p = 5006, *p =10
printf(“&q =%u, q = %u, *q = %d\n”,&q, q, *q);  /* Output */

&q=5002, g = 5006, *q=10
printf(“&r =%u, r = %u, *r = %d\n”,&r, 1, *r); /* Output */

&r= 5004, r= 5006, *r=10

Observe the following points from the above program segment:
¢ In the first set of instructions, memory is allocated for all pointer variables but
@ the pointers are not initialized. Hence, they contain garbage values and hence
they are called dangling pointers. Only the variable x is initialized.
¢ After executing the second set of statements, the pointer variables p, g and r
@ contains the address of integer variable x and logical representation is shown
in above figure.
¢ After executing the third set of instructions, even though various pointers have
@ different addressed, all of them points to same set of memory locations. So, the
output is 10.

Note: Even though the variables p, q and r have different addresses, they contain
address of x only. So, different pointer variables (p, q and r in this example) contain
address of one variable (x in this example). So, the value of x can be accessed and
changed using the variables p, q, r and x. In general, there can be multiple pointers to
a variable.

12.4.2 Pointers to Pointers

We have used pointers which directly points to data. In this section, let us see “What
is pointer to a pointer?”



C Programming Techniques &= 12.11

Definition: A variable which contains address of a pointer variable is called pointer
to a pointer. For example, consider the following declarations:

int a;
int *pl;
int **p2;

¢ The first declaration instructs the compiler to allocate the memory for the variable
a in which integer data can be stored.

¢ The second declaration tells the compiler to allocate a memory for the variable p/
in which address of an integer variable can be stored.

¢ The third declaration tells the compiler to allocate a memory for the variable p2 in
which address of a pointer variable which points to an integer can be stored. The
memory organization for the above three declarations is shown below:

p2 pl a
Garbage
value

Garbage ?
value

Assume the above declarations are followed by the following assignment statements:

a=10;
pl = &a;
p2=&pl;

The memory organization after executing the statement a = 10 is shown below:

p2

The memory organization after executing the statement pl1 = &a is shown below:

p2

The memory organization after executing the statement p2 = &p1 is shown below:

p2

Garbage
value

Garbage
value

pl

|, Garbage
value

pl

a

10

a

pl

\ 4

10

a

\ 4

A\ 4

10




12.12 Pointers

The data item 10 can be accessed using three variables a, pI and p2 are shown below:

a refers to the data item 10.

*pl refers to the data item 10. Here, using p/ and one indirection
operator, the data item 10 can be accessed.

**p2 refers to the data item 10. Here, using p2 and two indirection
operators the data item 10 can be accessed (i.e., *p2 refers to pl and
*#p2 refers to a)

The following program illustrates the way the data item 10 can be accessed using the
variable a, using a pointer variable p1 and pointer to a pointer variable p2.

Example 12.14: Program to access 10, using a variable, pointer variable and pointer
to a pointer variable

#include <stdio.h> TRACING
void main()
{ int a; p2 pl 2
int *pl; > e | > o !
int  **p2; v
p2 pl a
1A, Garbage Garb
a=10; ] value I Vaaﬁleage 10
p2 pl a
pl = &a; Garbage
] value 10
p2 = &pl; p2 pl a
> 10
Output
printf(“a = %d\n”,a); a=10
printf(“*p1 = %d\n”, *p1); *pl =10
printf(“**p2 = %d\n”, **p2); *Ep2 =10



C Programming Techniques & 12.13

Note: If x is declared as integer, which of the following statements is true and which
is false?

a. The expression *&x and x are the same. // it s true

b. The expression *&x and &*x are the same.  // it is false

illegal
Example 12.15: Given the following declarations:
int a=>5;
int b=7;
int *p=&a;
int *q=&b;
What is the value of each of the following expressions?
a. ++a;
b. ++(*p);
c.——(*q);
d. —-b;

Solution: The tracing of the above program segment is shown below:
/* Memory representation for the declarations */

int a=2y5; a 5 b| 7
int b=7 -
int *p=&a;
int *q=&b; p q
/* Increment a */
+_|_a; a 6 b 7
N
P q
/* Access a using pointer variable p */ al 7 bl 7
++(*p); 3
P q
al 7 b| 6

/* Access b using pointer variable q*/
-~(*q); )




12.14 Pointers

/* Decrement b */

12.5 Arrays and pointers

Consider the following declaration:

int  a[5]= {10, 20, 30, 40, 50};

Observe the following points:

¢ The compiler treats the array a as a pointer and memory is allocated for variable a.

¢ It then allocates 5 memory locations and address of the first memory location (say
0100) is copied into pointer variable a as shown in the diagram.

¢ The compiler then initializes all five memory locations with values 10, 20, 30, 40

and 50 respectively as shown in figure below:

al| 0100
&a[0] —> 0%‘ 10
&a[l] — 0102 20
&al2] — 0104 3p
&a[3] — 0106 4D
&a[4] — 0108 5

a[0]
a[l]
a[2]
a[3]
a[4]

Note: Assuming size of integer
is 2 bytes, two bytes are reserved
for each memory location

Note: The starting address of the
first byte of the array is called
base address which is 0100.

Note: The address of the 0™ memory location 0100 stored in @ cannot be changed. So,
even though a contains an address, since its value cannot be changed, we call a as

pointer constant. Observe that &a[0] and a are same.

a€<—> &a[)] €—>(@+0)

same

sam

To justify above points, now let us see “What is the output of the following

program?”’



C Programming Techniques & 12.15

PROGRAM TRACING
#include <stdio.h>

void main()

I
I
{ I
int  a[5]= {10, 20, 30, 40, 50}; | Output
I
printf(“%u %u %u\n”, &a[0], a, a+0);] 0100 0100 0100

}

Note: We may get different answer in our computer. But, whatever it is, observe that
the value of &a/0] or a or a+0 are same.

Now, let us see “How to access the address of each element?” The address of each
item can be accessed using two different ways:

address operator base address

with index with index

&al0] i‘.lle, 1000 (at0)i.e., 0100

&a[l] i.e., 1002 (atl)i.e., 0102

&a[2] i.e., 1004 (at2)i.e., 0104

&a[3] i.e., 1006 (at3)i.e., 0106

&a[4] i.e., 1008 (at4)i.e., 0108

In general,l' l’
&ali] €— > (a+i) wherei=0to4
is same as 0to 5-1

0 ton—1 (in general)
Note: The various ways of accessing the address of i item in an array a is shown
below:

&ali] issameasa+i

Tsame Tsame

&i[a] is same asi+a
So, address of a[i] can be obtained using any of the following notations:

&ali] or a+i or i+a or &i[a]



12.16 Pointers

The data in those addresses can be obtained using the indirection operator * as shown
below:

*&ali] or *(a+i) or *(i+a) or *&i[a]
Note: The pair *& get cancelled each other

a[i] i[a]

So, *(a+i) or *(i+a) or a[i] or i[a] or a[i] or i[a] are one and the same.

To justify this answer, consider the following program:

#include <stdio.h> | a=0100
id mai &a[0] —> 0100 10 |a[0]
void main() |
{ | &a[l] — 0102 20 al1]
int  a[5]= {10, 20, 30, 40, 50}; | &a[2] — 0104 30 a[2]
int 1=3; | &a[3] —> 0106 4I0 al3]
: &al[4] — 0108 0 a4

printf(“%d %d %d %d %d %d \n”, *(&al[i]), a[i], *(a+), *(i+a), i[a], *&i[a]);

} vl v vy
Output 40 40 40 40 40 40

Note: It is observed from the above example that: a[i] is same as *(a+i) denoted
using pointer concept. So, any array program can be written using pointers.

12.5.1 Largest of N numbers

Consider 5 elements 10, 20, 50, 25 and 15. It is required to find the largest of these 5
numbers. Now, let us see “How to write the program to find largest of N numbers?”

Design: Assume the variable big contains 10 which is the 0" element of the array and
pos is 0 which is the position of that element. The equivalent code can be written as:

big=a[0]; /* Assume first item is big */

pos = 0; /* Store 0 as the position of 0" item */ } Initialization



C Programming Techniques & 12.17

Since 0" item 10 is in big, the rest of the items such as a[1], a[2], a[3] and a[4]
should be compared with big as shown in figure:

ooy v
al0] _ a[l] a[2] a[3] a[4]

if (a[i] > big ) 20 | 50 [ 25 [ 15 |
{ a—

big = a[i]; \

pos =1; .
) i=1to4 big =10

1=1 to 5-1 where 5 indicates the number of elements
In general, i =1 to n-1 where n = 5 indicates the number of elements.

So, the code can be written as shown below:

for (i=1;1<=n-1;i++) A
{

if (a[i]> big)

{ . .
big = afil: > Main logic
pos =1;

3

; J

Note: When we know the program using arrays, we can easily write the program
using pointers. We have seen that a[i] is same as *(a+i) or *(i+a) or i[a]. So, replace
ali] by *(a+i) to get the program using pointers.

Now, the complete program to find the largest of N elements wsing an array and
using pointer with indexing is shown below:



12.18 Pointers

Example 12.16: Program to compute largest and its position

Using Arrays | Using Pointer with indexing
#include <stdio.h> | #include <stdio.h>
I
void main() I void main()
{ F{

int a[10], n, i, big, pos; int a[10], n, i, big, pos;

printf("Enter number of elements\n");
scanf("%d",&n);

printf("Enter number of elements\n");
scanf("%d",&n);

printf(“Enter the elements\n”);
for (1=0;1<=n-1; i++)
scanf("%d",a+1); /* (ati) = &ali] */

printf(“Enter the elements\n”);
for (1=0;1<=n-1; i++)
scanf("%d",&a[i]);

big = a[0]; big = *(a+0);
pos = 0; pos = 0;
for (i=1;1<=n-1;1++) for (i=1;1<=n-1;1++)
{ {
if (a[i] > big) if ( *(at+i) > big)
{ {
big = a[i]; big = *(a+i);
pos =i; pos =1;
} 3
} 3

printf("Largest = %d\n”,big);
printf(“Position = %d\n", pos+1);

printf("Largest = %d\n”,big);
printf(“Position = %d\n", pos+1);

}

12.5.2 Pointers and other operators

[

Like normal variables in an expression, pointer variables in expressions can also be
used. If p1 and p2 are pointer variables that are declared and initialized properly, *p1
and *p2 represent the values to be manipulated. So, operations such as relational,
arithmetic, logical etc., can be performed on *p1 and *p2.

Example 12.17: Valid statements with operations such as multiplication and addition

¢ x=7*pl* *p2; // The values pointed by p1 and p2 are multiplied
¢ sum =sum + *pl; // ' The value pointed to by p1 is added to sum
¢ *pl="*pl+1; // value pointed to by p1 is incremented by 1



C Programming Techniques & 12.19

¢ x="*pl /*p2; /I ' Error: This expression is wrong because /* before p2
/l'is treated as beginning of the comment in C

Note: The error in the above statement can be eliminated by inserting the space
between / and * as shown below:

¢ x=*pl/ *p2 /I Correct: Since there exists space between / and *, it is
// treated as division operation not as beginning of the
/I comment

Note: Even though various operations can be performed on *p1 and *p2 (since they
represent the values to be manipulated), the operations are restricted on p1 and p2
since they contain only the addresses. The various operations that can be performed
on pointer variables are shown below:

—> Adding an integer to a pointer

Operations —> Subtracting an integer from pointer
performed

on pointers

——> Subtracting two pointers

—> Comparing two pointers

12.5.3 Adding an integer to a pointer

An integer can be added to a pointer. This can be explained using the following
example.

Example 12.18: Consider the following declaration:
int  a[5]= {10, 20, 30, 40, 50};

int  *pl, *p2;
pl =a;
p2 =a;

The various valid and invalid statements are shown below:

¢ pl=pl+1; /* Valid: Points to next element */
¢ pl=pl+3; /* Valid: Points to 3™ element from p1*/
¢ pl+p2; /* Invalid: Two pointers cannot be added */

¢ pl+t; /* Valid: Same as pl =pl +1 */



12.20 Pointers

Example 12.19: Pointer arithmetic using increment operator

int  a[5]={10, 20, 30, 40, 50};
int *p;

p=a; /* p points to a */

Assuming base address of a is
0100, the variable p points to
first item as shown below:

a\ |
p—>0100 | 10
0102 | 20

0104 | 30

0106 | 40

0108 | 50

After executing the statement:
pt+;

the pointer variable p points to the

next integer.

Note: Each time p++ is executed,
its value will be incremented by 2
because size of integer is 2 bytes.
In other words, p points to the
next item.

float a[5]={10.555, 20, 30, 40, 50};
float *p;

p=a; /* ppoints to a */

Assuming base address of a is 0100,
the variable p points to first item as
shown below:

1\
p —> 0100 | £0.555
0104 | 20.0
0108 | :30.0
0112 | i40.0
0116 | i50.0

After executing the statement:

pt+;
the pointer variable p points to the next
floating point number.

Note: Each time p++ is executed, its
value will be incremented by 4 because
size of floating point number is 4 bytes.
In other words, p points to the next
item.

statement:
pt+t;

2

¢ 1 for character array
¢ 2 for integer array

Note: In general, if p is a pointer variable pointing to an array, after executing the

the pointer variable is incremented by:

¢ 4 for floating point array and 8 for double and so on. In other words, the
pointer points to the next item of an array.

12.5.4 Display array elements using pointers

Now, let us see “How to write a program to display array elements using pointer?”



C Programming Techniques &= 12.21

Design: Consider the following array and assume p points to the beginning of the
array. To start with p points to 0100 and *p refers to 10. Let us observe the outputs in
various iterations shown below:

01(}0 0102 0104 0106 0108 0110
0o [ 20 [ 30 | 40 | 50 |

of array T T T T T T

beginning ‘

P P p P P P
Iterations: i=0 1 2 3 4
print 10 and increment p using <—,
printf(“%d\n”, *p); /10
p++; /0102
print 20 and increment p using <
printf(“%d\n”, *p); /I 20
p++; /0104
print 30 and increment p using <
printf(“%d\n”, *p); /I 30
p++; /0106
print 40 and increment p using <
printf(“%d\n”, *p); /I 40
p++; /0108
print 50 and increment p using<
printf(“%d\n”, *p); q /I 50
p++; /0110

In general, observe that the following two statements:

printf(“%d\n”, *p);
pt+;

are repeatedly executed for 1 = 0 to 4, to get the output 10, 20, 30, 40 and 50. The C
equivalent statement using for loop 1s shown below:
for 1=0;1<=4;it++) /¥1<=4i1ssameasi<5 */
{
printf(“%d\n”, *p);
Pt



12.22 Pointers

The complete program is shown below:

Example 12.20: Program to display array elements using pointer

#include <stdio.h>

void main()

{

}

int a[] = {10, 20, 30, 40, 50 };

int *p;
int 1
p=a; /* same as p = &a[0] */

for (1=0;1<=4;it++)

{

printf("%d ",*p); —> jUEL 30 40 50
pt;

}

printf("\n"); 2

12.5.5 Sum of N numbers using pointers

In the previous example, instead of printf() within the for loop, if we use the

statement

then we add all the elements of the array. The complete program to add »n elements is

sum = sum + *p;

shown below:

Example 12.21: Program to compute sum of elements of array

#include <stdio.h>

void main()

{

int  a[] = {10, 20, 30, 40, 50 };
int *p;
int 1, sum;

p=a; /* point p to the first element */



C Programming Techniques & 12.23

sum = 0; /* Initialize sum to 0 */

for (1=0;1<=4;1++)

{

pH: sum = sum + *p++; or sum = sum + *(p++);

2

* *
sum = sum + *p; } /* Same as */

}

printf("Sum of all the numbers = %d\n",sum);

}

Note: Observe that by executing p++, we can point p to the next element. On similar
lines by executing p--, we can point p to the previous element in an array.

12.5.6 Subtracting an integer from a pointer

Subtraction can be performed when first operand is a pointer and the second operand
is an integer. This can be explained by considering the following example.

Example 12.22: Consider the following declaration and initialization:
int  a[5] = {10, 20, 30, 40, 50};

int *pl;
pl = &a[4];
The various valid and invalid statements are shown below:
¢ pl=pl-1; /* Valid */
¢ pl=pl-3; /* Valid */
¢ pl--; /* Valid: Same as pl =pl —1*/
¢ -pl; /* Valid: Same as pl =pl —1*/
¢ pl=1-pl; /* Invalid: The first operand should be a pointer

Example 12.23: Write a program to display array elements using pointer from last
element to first element.

Note: As we execute p++, pointer variable p points to next element, if we execute p--,
pointer variable p points to the previous element.

Design: To get the array elements in reverse order, point the variable p to point to the
end of the array and replace p++ by p— — in the previous program. The complete

program is shown below:

#include <stdio.h>



12.24 Pointers

void main()

{
int a[]= {10, 20, 30, 40, 50 };
int *p;
int 1
p=&a[4]; /* point p to the last element™®/
for (i=0;i<=4; i++) N Output
{ _.7 0100 04 -
printf("%d ",*p); p \5:: > 0102 20 50 403020 10
p--: o2 0104 30
} 40106 40
printf("\n"); 0108 50 y
1 - .

p points to previous element after executing p--
and items are accessed from bottom to top.

12.5.7 Subtracting two pointers

If two pointers are associated with the same array, then subtraction of two pointers is
allowed. But, if the two pointers are associated with different arrays, even though
subtraction of two pointers is allowed, the result is meaningless.

Consider the following declaration and initialization:
int  a[5]= {10, 20, 30, 40, 50};

int *pl;
int *p2;
float *f;
pl =a; /* same as pl = &a[0] */
p2 = &al[4];
The various valid and invalid statements are shown below:

¢ p2-pl; /* Valid */

¢ pl—p2; /* Valid */

¢ f—pl; /* Invalid: Since type of both operands is not same */

The memory map for the above declaration is shown below:
pl 4 elements away p2
0100 0102 0104 0106 0108

| 10 | 20 | 30 | 40 | 50 |




C Programming Techniques & 12.25

Note: Observe following facts from above figure:
¢ p2 has an address 0108 and p1 has address 0100.
¢ But, p2 — pl is not 0108-0100. Actually, it is (0108-0100)/sizeof(int) i.e.,
(0108-0100)/2 =4
¢ So, p2 — p1 gives us 4 which indicates that p2 is at a distance of 4 elements
away from pl.
¢ So, p2 —pl +1 gives the number of elements in the array

12.5.8 Comparing two pointers

If two pointers are associated with the same array, then comparison of two pointers is
allowed using relational operators. But, if the two pointers are associated with
different arrays, even though comparisons of two pointers is allowed, the result is
meaningless.

Consider the following declaration and initialization:
int  a[5]= {10, 20, 30, 40, 50};

int *pl;
int  *p2;
float *f;
pl =a; /* or pl = &a[0] */
p2 = &a[4];
The various valid and invalid statements are shown below:
¢ p2l=pl; /* Valid */;
¢ pl=p2; /* Valid */;
¢ pl <=p2; /* Valid */;
¢ pl>=p2; /* Valid */
¢ fl=pl; /* Invalid: Since type of both operands is not same */

Note: Multiplying and dividing a pointer variable with any other variable or integer is
not allowed.

Now, let us see “How to write a program to display array elements by comparing
of two pointers?”

Design: Let us use two pointers p and q where p points to the first element of array a
and q points to the last element of array a as shown below:

p q

|

0100 0102 0104 0106 0108
a | 10 | 20 | 30 | 40 | 50 |




12.26 Pointers

Observe from the above figure that as long as p <= q, value pointed to by p can be
printed and updated using the following statements:

while (p <=q)
{ I Output
printf("%d ",*p); | 10 20 30 40 50
ptt; I
} I

So, the complete program is shown below:

Example 12.24: Program to display array elements by comparing pointers

#include <stdio.h>

void main()

{
int a[]= {10, 20, 30, 40, 50 };
int *p;
int *q;
p=&a[0]; /* point p to the first element */
q=&a[4]; /* point q to the last element™/
while (p <=q) /* Comparing two pointer values */
{ @
printf("%d ", *p); 10 20 30 40 50
p++;
}
rintf("\n"); o
) P ( ) R,

Note: Two pointer subtractions and two pointer comparisons are generally performed
if both the pointers point to the same array.

12.6 Passing an array to a function / character pointer and functions

As we pass various parameters to functions, we can also pass name of an array as a
parameter. Note: Name of an array is a pointer to the first element. So, when we pass
an array to a function we should not use the address operator. The syntax of a
function call is:

function_name (a); /* Here a should have been declared as array */

The two ways of declaring and using the array in the called function are:



C Programming Techniques & 12.27

¢ using pointer declaration
¢ using array declaration

|

void function name(int a[]) void function name(int *a)
{ {
/* ith item can be accessed /* ith item can be accessed
using ali] using *(a+i)
*/ */
} }

Note: Easier way of writing a program using pointers
¢ write a program using arrays i.e., may be using a[i] or a[j] etc.
¢ Then replacing a[i] by *(a+i) and a[j] by *(atj) we get the program using
pointers.

Now, using the above technique, any array program can be converted into a program
using pointers.

12.6.1 strlen(str) — String Length
Consider the function to find the length of the string (Refer example 10.11, section

10.5.1 for design details). Various versions of the functions are written side by side to
show the difference:

Example 12.25: Function returning the string length

Using arrays | Using pointers

int my_strlen(char str[])

| int my_strlen(char *str) int my_strlen(char *str)

|
{ | { |
int i=0; | int i=0; | char *ptr = str;
/* compute the length */ | /* compute length */ | while (*ptrt+)
while (str[i] 1= \0°) while (*(str +i) ) | ;
it : i+ |
| return ptr-str;
return i; |  returni; '}
} i |

The C program to access any of the above functions can be written as shown below:



12.28 Pointers

Example 12.26: Program using the user-defined function my_strlen()

#include <stdio.h>

/* Include: Example 12.25: to compute the length */

void main()

{
char str[20]; I
int i | Input
printf("Enter the string\n"); : Enter the string
gets(str); | Rama
1=my_strlen(str) ; | 1=4
| Output
printf("Length = %d\n", 1); Length =4
) I
I

12.6.2 strcpy(dest, src) — string copy

Now, let us write a function to implement strcpy (Refer section 10.5.2, example 10.14
for design details). So, the final function to copy the contents of source string src to
destination string dest using arrays as well as using pointers is shown below:

Example 12.27: Function to copy string src to string dest using 3 methods.

Using arrays Using Pointers

: % *
void my_strcpy(char dest[], char src[]) : zmd my_strepy(char *dest, char *src)
¢ /* copy the string */
while ( *src 1= \0)

*dest++ = *src++;

int 1=0;

I
I
/* Copy the string */ |
while (src[i] = \0") | /* attach null character at end */
{ | *dest = \0’;
dest[i] = src[i]; | }
1++;
} ! Note: Following is most efficient one
void my_strcpy(char *dest, char *src)
/* Attach null character at the end */| {
dest[i] = \0’; | while (*dest++ = *src++)
} | ;
|}




C Programming Techniques & 12.29

[T}

Note: Observe the null statement *“;” in the third version of my_strcpy. It does nothing.
The condition in the while loop i.e., *dest++ = *src++ is repeatedly executed and
each character of the source is copied into destination including \0’. Once \0’ is
reached, the condition fails and control comes out of the loop. The complete program
which uses the user defined function is shown below:

Example 12.28: Program using the user-defined function my_strcpy()

#include <stdio.h>
/* Include: Example 12.27 to compute the length */

void main()

{
char src[20], dest[20]; | TRACING
printf("Enter the string\n"); | Enter the string
gets(src); : RAMA
my_strcpy(dest, src); | dest = “RAMA”
printf("Dest string = %s\n", dest); | Dest string = RAMA
} I
I

12.6.3 strecmp(sl, s2) — string gomparf

This function is used to compare two strings. The design details are given in section
10.5.7, example 10.25. The function using arrays and pointers are given side by side
below:

Example 12.29: Function to compute two strings.

Using arrays Using Pointers
int my_stremp(char s1[], char s2[]) | intmy stcmp(char *sl, char *s2)
{ |
int 1 |
i=0; I ,
’ hile (*s1 == *s2
while (s1[i] == s2[i]) I ? ile (*s $2)
¢ | if (*s1 = “0°) break;
if (s1[i] = \0’) break; | i (s ) break;
i+ I sl++, s2++;
} I }
. : I
return sl[i] — s2[i]; | return *sl - *s2;
; Cod



12.30 Pointers

The above function returns one of the following values:

¢ zero if s1 =52
¢ positive if s1>s2
¢ negative if s1 <s2

The complete program showing the usage of my_strcmp is shown below:

Example 12.30: C program showing the usage of my_strcmp

#include <stdio.h>
/* Include: example 12.29: Function my strecmp */

void main()

{
char s1[] = "RAMA";
char s2[] = "KRISHNA";
int difference;

difference = my_strcmp(sl, s2);

if (difference == 0)
printf("String s1 = string s2\n");
else if (difference >0)
printf("String s1 > string s2\n");
else
printf("String s1 < string s2\n");
}

12.7 Understanding complex declarations

Note that it is very difficult to interpret and understand the declarations especially
related to pointers. To read and understand the complicated declarations, we can
follow the right-left rule. Now, let us see “What is right-left rule?”

Definition: The right-left rule can be stated as follows:
¢ Start with the identifier in the center

of declaration end
¢ Read the declarations in a spiral I::I

manner once going right and then identifier
left, again right and left and so on till Y,y

all entities are read i.e, right-left T
reading of each symbol is done
alternatively spinally. This concept
can be represented pictorially as
shown on the right hand side.

start




C Programming Techniques &= 12.31

Example 12.31: Interpret the declaration: int x. The declaration can be pictorially
represented as shwon below:

end is an Note: Read and interpret the entity in each box
int X in the direction of the arrow mark along with
labels.
N T
start i.e., x 1s an int. In other words, x is an integer

Example 12.32: Interpret the declaration: int *p. The declaration can be pictorially
represented as shwon below:
to

Reading in the direction of
end isa arrow along with the labels we
have:

p is a * to int
A A i.e., p is a pointer to an integer
start [By reading * as pointer, int as
integer]

int * p

Example 12.33: Interpret the declaration: int a[l10]. The declaration can be
pictorially represented as shwon below:

is an array of

end Reading in the direction of arrow
X along with the labels we have:
int a [10]
Y, N a is an array of 10 int
i.e., a is an array of 10 integer
start .. .
[By reading int as integer]

Example 12.34: Interpret the declaration: nt ~p|>|. 1ne aeciarauon can be
pictorially represented as shwon below:

to
end is an array of Reading in the direction of
A ¥ arrow along with the labels we
int * p [5] have:
x = p is an array of S * to int

i.e., p is an array of 5 pointers
start to integers where * is pointer,

int is integer

Example 12.35: Interpret the declaration: int (*p) [5]. The declaration can be
pictorially represented as shwon below:



12.32 Pointers

to an array of

Note: Preference is given for the
expression withing parantheses.

Reading in the direction of arrow
along with the labels we have:

end is a 3 A
int * p [5]
A A
start

Example 12.36: Interpret the declaration:
pictorially represented as shwon below:

is a function

p is a * to an array of [S] inti.c.,
p is a pointer to an array of 5
integers where * is pointer, int is
integer

int a (int b). The declaration can be

with b as integer parameter

end 4
int a (int b)
N
start
returning

Note: If an identifier is followed by (....), it indicates a function call or function
declaration. So, reading in the direction of arrow along with the labels we have:

a is a function with (int b) and

returning int

1.e., a is a function which accepts b an integer as a parameter and returning an integer

12.8 Memory allocation functions

Definition: Memory is a hardware unit where the data or instructions (programs) are stored. The process or mechanism
by which memory space is allocated to variables and constants during run time i.e., when the program is being executed

is called memory allocation.
B Memory allocation is a hardware operation that is managed by
and software applications.
B Memory allocation is achieved through a process known as me
B The two memory allocation techniques are:

Static Memory Allocation
Dynamic Memory Allocation

Command line
Operating System Environment
Stack
mory management.
q Heap
Operating

System
Data

Software

Applications Code/Text

Memory unit



C Programming Techniques & 12.33

Now, let us see “What is static memory allocation?”

Definition: The process of allocating the memory space in the stack area during run-time as decided by the compiler
during compile time is called static memory allocation.

B The size of the memory space to be allocated for various types of data is decided by the compiler during compile time
since the compiler knows the size of each data type.

int a; // Need to allocate 4 bytes
float b; // Need to allocate 4 bytes
double c¢; // Need to allocate 8 bytes

B The compiler generates necessary machine instructions to allocate the memory space based on size of each data type
in the stack area of memory. When these instructions are executed during run-time, memory is allocated for these data

items in the stack area of the memory.

Note: Compiler will not allocate memory space for variables. It generates necessary machine instructions to allocate the
memory space during run-time.

B The size of the memory space to be allocated is fixed during compilation time.

Ex: int a [5]= {50, 40,20,90,70}; // Instruction given by programmer to the compiler

alo] [ [2]1 3] [4] /l Memory space allocated by the compiler during compilation

[ 50/ [0 [ 20 [Too [ 0[]

B Once the memory space is fixed during compilation time, it size cannot be increased to accommodate more data.

B If more space is allocated during compilation time and only few elements are stored, it results in wastage of more space.
Its size cannot be decreased to accommodate less data.

Ex: int a[10] = {50, 40, 20, 90,70 };
a [0] [ 21 31 41 IS [6] [7] [8]‘ [9]‘

L] 9]

Note: All the disadvantages of static memory allocation are overcome using dynamic memory allocation technique.

Note: Even though the memory is allocated for local variables on the stack during run time, the size of memory to be
allocated is decided during compilation time.

saividya.ac.in

Note: If there is an unpredictable storage requirement, then static allocation technique
is not at all used. This is the point where the concept of dynamic allocation comes
into picture. Now, the question is “What is dynamic memory allocation?”’



12.34 Pointers
What is dmamic memory allocation technigue?

Definition: The process or mechanism by which memory space is allocated to store data during run time i.e., when the

program is being is executed is called dynamic memory allocation. In this technique, the user can request the Operating

System to allocate the specified memory space to store the data from the heap area. In C/C++ language,

B Memory allocation is done using functions such as: malloc(), calloc() and realloc()

Command line
B Memory de-allocation is done using functions such as: free() Environment
Advantages Stack
B Enables us to use as much storage as we want without worrying any wastage.
B Enables us to enter required amount of data during run time. e
m Enables us to remove the required amount of data during run time.

Data
Code/Text
Memory layout

Now, let us see “What are the differences between static memory allocation and
dynamic memory allocation?” The various differences between static allocation and
dynamic allocation technique are shown below:

Static allocation technique

Dynamic allocation technique

Memory is  allocated

compilation time

during

Memory is  allocated

execution time

during

The size of the memory to be
allocated 1s fixed during
compilation time and cannot be
altered during execution time

When required memory can be
allocated and when not required
memory can be de-allocated

Used only when the data size is
fixed and known in advance before
processing

Used only for
memory requirement.

unpredictable

Execution is faster, since memory is
already  allocated and  data
manipulation is done on these
allocated memory locations

Execution is slower since memory
has to be allocated during run time.
Data manipulation is done only
after allocating the memory.

Memory is allocated either in stack
area (for local variables) or data
area (for global and static
variables).

Memory is allocated only in heap
area




C Programming Techniques & 12.35

6. Ex: arrays 6. Ex: Dynamic arrays, linked lists,
trees

Now, let us see “What are the various memory management functions in C?”” Th

The various memory management functions available in C are:
m malloc()

m calloc()
m realloc()
u free()
B The required memory space for the data is allocated during run-time in heap area.
B If specified memory space is not available, the function malloc() returns NULL.
B If memory space is successfully allocated, the function malloc() returns address of the first byte.
Syntax:
#include <stdlib.h>
void *malloc ( size_t size)

For example,

int «ptr;
‘ptr = (int *) calloc (2, sizeof(int));‘ S 8|2 8 8 I &8 8 5 g 3 = =
. S - v v v v—{ v— — — — — T =)
if ( ptr == NULL) S o | o o o o o o o o o =)
{  printf (“ Insufficient memory\n”, . 0101

printt ( | HEEEEEEENEN
} ptr Free Memory
free (ptr); Stack area Heap area

— e G
Definition: malloc() is the shorthand name for memory allocation which is a built in function in C. It is declared in the
header file “stdlib.h”. Using this function the programmer can request the Operating System to allocate a block of
contiguous memory according to the size specified in the argument.

B The required memory space for the data is allocated during run-time in heap area.
B If specified memory space is not available, the function malloc() returns NULL.
B If memory space is successfully allocated, the function malloc() returns address of the first byte.
Syntax:
#include <stdlib.h>
void *malloc ( size_t size)

For example,

int =«ptr;
‘ptr = (int *) calloc (2, sizeof(int));‘ 2 8|2 8 8 T &8 &8 5 g 3 = =
. S — v v v v — — — — e TTTCCCCCC =)
if ( ptr == NULL) S o | o © o o o o o o o =)
{  printf (“ Insufficient memory\n” . 0101

printt ( | HEEEEEE RN
} ptr Free Memory
free (ptr); Stack area Heap area

saividya.ac.in



12.36 Pointers

malloc()

calloc()

B Syntax:

#include <stdlib.h>
data_type «ptr;
ptr = (dat_type * )malloc(size);

size : Number of bytes to be allocated

#include <stdlib.h>
data_type «ptr;
( dat_type * ) calloc(n, size) ;
Takes two arguments:
n : Number of blocks to be allocated

ptr =

size : Number of bytes to be allocated for each block

B Memory allocation

Allocates a single block of memory
of size bytes.

Allocates multiple blocks of memory where
m Each block is of same size

B Size represent the number of bytes to be allocated
for each block.

B Memory Initialization

Allocated memory space will not be
initialized to any value.

Allocated memory space is initialized to 0.

m Initializing allocated
memory to 0’s

p = (int * )malloc ( sizeof (int) *n) ;
memset (p, 0, sizeof (int) * n) ;

p = (int * )calloc (n,sizeof (int)) ;

saividya.ac.in

#include <stdio..h>
#include <stdlib.h>

void main ()

int

int * allocate_memory (int n)

int =ptr;
ptr =
if (ptr == NULL)

printf (* Insufficient memory\n”) ;

) exit (0);

} return ptr;

12.8.1 malloc(size)

n, #«a;

printf ( “Enter no. of items:\n” );
scanf (*%d”, &n);

(int * ) malloc (n * sizeof (int) );

a = allocate_memory (n ) ;

printf (“Enter array items:\n” );

for (i = 0; i < mn; itt) scanf (®%d”, (a+1i));

printf (“Array items:\n”);
for (i = 0; i < mn; it+) printf (”%d\n”, *(a+1i));

free (a);

Now, let us see “What is the purpose of using malloc?” This function allows the
program to allocate memory explicitly as and when required and the exact amount
needed during execution. This function allocates a block of memory. The size of the
block is the number of bytes specified in the parameter. The syntax is shown below:

#include <stdlib.h>

ptr = (data_type *) malloc(size);

where

¢ ptris a pointer variable of type data_type

/* Prototype definition of malloc() is available */



C Programming Techniques & 12.37

¢ data_type can be any of the basic data type or user defined data type
¢ size is the number of bytes required

Observe the following points:
¢ On successful allocation, the function returns the address of first byte of allocated

memory. Since address is returned, the return type is a void pointer. By #ype
casting appropriately we can use it to store integer, float etc.
If specified size of memory is not available, the condition is called “overflow of
memory”. In such case, the function returns NULL. It is the responsibility of the
programmer to check whether the sufficient memory is allocated or not as shown
below:

void function _name()

{
ptr = (data_type *) malloc(size);
if (ptr ==NULL)
{
printf(“Insufficient memory\n™);
exit(0);
3
3
Example 12.37: Program showing the usage of malloc() function
#include <stdio.h> I TRACING
#include <stdlib.h> I
void main() | Execution starts from here
{
int 1,n;

Enter the number of elements
5

printf("Enter the number of elements\n");

I
I
int  *ptr; | Inputs
I
scanf("%d",&n); |

ptr = (int *) malloc (sizeof(int)* n);

/* 1f sufficient memory is not allocated */
if (ptr ==NULL)
{
printf("Insuffient memory\n");
return;



12.38 Pointers

3

/* Read N elements */

printf("Enter N elements\n"); Enter N elements

for 1=0;1<n;1++)
scanf("%d", ptr+1); 10 20 30 40 50

printf("The given elements are\n");

for 1=0;1<n;1++) The given elements are
printf("%d ", *(ptr+i)); 10 20 30 40 50

}
12.8.2 calloc(n, size)

Now, let us see “What is the purpose of using calloc?” This function is used to
allocate multiple blocks of memory. Here, calloc — stands for contiguous allocation of
multiple blocks and is mainly used to allocate memory for arrays. The number of
blocks is determined by the first parameter n. The size of each block is equal to the
number of bytes specified in the parameter i.e., size. Thus, total number of bytes
allocated is n*size and all bytes will be initialized to 0. The syntax is shown below:

#include <stdlib.h> /* Prototype definition of calloc() is available */

ptr = (data_type *) calloc(n, size);

where
¢ ptris a pointer variable of type data_type
¢ data_type can be any of the basic data type or user defined data type
¢ n is the number of blocks to be allocated
¢ size is the number of bytes in each block

Observe the following points:

¢ On successful allocation, the function returns the address of first byte of allocated
memory. Since address is returned, the return type is a void pointer. By type
casting appropriately we can use it to store integer, float etc.

¢ If specified size of memory is not available, the condition is called “overflow of
memory”. In such case, the function returns NULL. It is the responsibility of the
programmer to check whether the sufficient memory is allocated or not as shown
below:

void function _name()

{

ptr = (data_type *) calloc(size);



C Programming Techniques & 12.39

if (ptr ==NULL)
{

printf(“Insufficient memory\n™);
exit(0);

Example 12.38: Program to find maximum of n numbers using dynamic arrays

#include <stdio.h>
#include <stdlib.h>

void main()

{

int *a, 1, j, n;

printf("Enter the no. of elements\n");
scanf("%d",&n);

/* Allocate the required number of memory locations dynamically */
a = (int *) calloc( n, sizeof(int) );

if @==NULL) /* If required amount of memory */
{ /* 1s not allocated */
printf(“Insufficient memory\n™);
return;
}

printf("Enter %d elements\n", n); /* Read all elements */
for (1=0;1<n;it++)

{

scanf("%d",&al[1]);
}
1=0; /* Initial position of the largest number */
for (i=1;1<n;it++)
{

if(afi]>a[j])j=1 /* obtain position of the largest element™/
}

printf("The biggest = %d is found in pos = %d\n",a[j], j+1);



12.40 Pointers

}

free(a); /* free the memory allocated to n numbers */

Observe the following points:

14
14

The variable a is a pointer to an int.

Once memory is allocated dynamically using calloc(), the address of the first byte
is copied into a.

From this point onwards the variable a can be used as an array or used as a
pointer. If a is used as an array, the i element can be accessed by a[i] and the
address of i element can be obtained using &ali]

If ptr is used as a pointer, the i™ element can be accessed by *(a + i) and the
address of i element can be obtained using (a + i)

In the above program in place of (a + 1) we can use &a[i]. At the same time, in
place of *(a + 1) we can use a[i]

12.8.3 realloc(ptr, size)

Now, let us see “What is the purpose of using realloc?”

Before using this function, the memory should have been allocated using malloc() or
calloc(). Sometimes, the allocated memory may not be sufficient and we may require
additional memory space. Sometimes, the allocated memory may be much larger and
we want to reduce the size of allocated memory. In both situations, the size of
allocated memory can be changed using realloc() and the process is called
reallocation of memory. The reallocation is done as shown below:

¢

14
14

realloc() changes the size of the block by extending or deleting the memory at the
end of the block.

If the existing memory can be extended, ptr value will not be changed

If the memory cannot be extended, this function allocates a completely new block
and copies the contents of existing memory block into new memory block and
then deletes the old memory block. The syntax is shown below:

#include <stdlib.h> /* Prototype definition of realloc() is available */

¢ ptr is a pointer to a block of previously allocated memory either using
malloc() or calloc().



C Programming Techniques &= 12.41

¢ size is new size of the block

if (ptr ==NULL)

{ /* Memory is not allocated */
printf(“Insufficient memory\n™);
return;

}

Now, let us see “What does this function return?” This function returns the following

values:

¢ On successful allocation, the function returns the address of first byte of allocated
memory.

¢ If specified size of memory cannot be allocated, the condition is called “overflow
of memory”. In such case, the function returns NULL.

Example: 12.39: C program showing the usage of realloc() function.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void main()

{
char *str;
str = (char *) malloc(10); /* allocate memory for the string */
strepy(str, “Computer”);
str = (char *) realloc(str, 40);
strepy(str, “Computer Science and Engineering”);
}

12.8.4 free(ptr)
Now, let us see “What is the purpose of using free()?”

This function is used to de-allocate (or free) the allocated block of memory which is
allocated by using the functions calloc(), malloc() or realloc(). It is the responsibility
of a programmer to de-allocate memory whenever it is not required by the program
and initialize ptr to NULL. The syntax is shown below:

#include <stdlib.h> /* Prototype definition of free() is available */
free(ptr);
ptr = NULL;



12.42 Pointers

Example: 12.40: Sample program to show the problems that occur when free() is not
used.

1. #include <stdlib.h>

2.

3. void main()

4.4 i

6.

7.  a=(int *) malloc(sizeof(int)); 2

¢ a2 Too: [ = [100]
9.

10. a= (int *) malloc(sizeof(int)); : 200
11. *a=200;

12.}

Now, let us see “What will happen if the above program is executed?” The various

activities done during execution are shown below:

¢ When control enters into the function main, memory for the variable a will be
allocated and will not be initialized.

¢ When memory is allocated successfully by malloc (line 7), the address of the first
byte is stored in the pointer a and integer 100 is stored in the allocated memory
(line 8).

¢ But, when the memory is allocated successfully by using the function malloc in
line 10, address of the first byte of new memory block is copied into a (shown
using dotted lines.)

Observe that the pointer a points to the most recently allocated memory, thereby
making the earlier allocated memory inaccessible. So, memory location where the
value 100 is stored is inaccessible to any of the program and is not possible to free so
that it can be reused. 7his problem where in memory is reserved dynamically but not
accessible to any of the program is called memory leakage. So, care should be taken
while allocating and de-allocating the memory. It is the responsibility of the
programmer to allocate the memory and de-allocate the memory when no longer
required.

Note: Observe the following points:
¢ Itis an error to free memory with a NULL pointer
¢ It is an error to free a memory pointing to other than the first element of an
allocated block
¢ It is an error to refer to memory after it has been de-allocated



C Programming Techniques & 12.43

Note: Be careful, if we dynamically allocate memory in a function. We know that
local variables vanish when the function is terminated. If ptr is a pointer variable
used in a function, then the memory allocated for ptr is de-allocated automatically.
But, the space allocated dynamically using malloc, calloc or realloc will not be de-
allocated automatically when the control comes out of the function. But, the allocated
memory cannot be accessed and hence cannot be used. This unused un-accessible
memory results in memory leakage.

12.12 Advantages and disadvantages of pointers

By this time, we should have understood the full concepts of C pointers and given any
problem we should be in a position to solve. After understanding the full concepts of

pointers, we should be in a position to answer the question “/What are the advantages
and disadvantages of pointers?”

Advantages

¢ More than one value can be returned using pointer concept (pass by reference).

¢ Very compact code can be written using pointers.

¢ Data accessing is much faster when compared to arrays.

¢ Using pointers, we can access byfe or word locations and the CPU registers
directly. The pointers in C are mainly useful in processing of non-primitive data
structures such as arrays, linked lists etc.

Disadvantages

¢ Un-initialized pointers or pointers containing invalid addresses can cause system
crash.

¢ It is very easy to use pointers incorrectly, causing bugs that are very difficult to
identify and correct.

¢ They are confusing and difficult to understand in the beginning and if they are
misused the result is not predictable.



Definition: Stack is a special type of data structure where elements are inserted from one end and elements are deleted
from the same end.

g

*+ Using the above approach, the I.ast element Inserted is the First element to be deleted Out.

o~

¢+ Hence, stack is also called L.1FO data structure.

K3
“e

The stack s = {ay, a;, a,, a3,..... a,; } is pictorially represented as shown in fig:
The elements are inserted onto the stack in the order a;, a;, a,, a;, ..... a,, a,, |top

.,
L X3

i.e., item a, is inserted first, item a, is inserted next, and so on. Finally, a,_, is inserted.

]

% Since a, is on top of the stack, it is removed first, then a,, and so on.

a

Stack can be represented using: "

< Array representation L

« Linked representation Ay
stack

stacks = {ay, a;, a5, a3, eeo0o A1 }

The various operations that can be performed on stack are:

2,

<+ Insertion : Inserting an element into the stack is called PUSH operation.

e

+ Deletion : Deleting an element from the stack is called POP operation.
< Display : Contents of the stack are displayed.

Insertion
% Only one element is inserted at a time.
% An element is inserted only on top of the stack.

% Inserting an element into the stack is called
PUSH operation.

“* When stack is full it is not possible to insert any element
into the stack.

% Trying to insert an element into the stack when the stack
is full is called OVERFLOW of stack.

STACK_SIZE = 4

Overflow
131 [3] 131 3] top[3] | 10 top[3] | 10
21 2] 21 top2] | 25 21| 25 21| 25
1] 1] top[1] | 20 | 20 1| 20 1| 20
[0] top[0] | 30 [0]] 30 [01| 30 [0]| 30 [0]]| 30
top [-1] Z‘t';lz‘lf item = 30 item = 20 item = 25 item = 10 item = 50




Deletion

\/

“* Only one element is deleted at a time.

“ An element is deleted only from top of the stack.

\/

% Deleting an element from the stack is called
POP operation.

“* When stack is empty it is not possible to delete any
element from the stack.

“ Trying to delete an element from the empty stack
is called UNDERFLOW of stack.

top[3] | 10 3] [3] 3] 3]
21| 25 top[2]| 25 2] 2] [2]
11} 20 ]| 20 top[1] | 20 [1] 1]
[0]] 30 01| 30 [0]| 30 top[0] | 30 [0]
top [-1] empty
delete 10 delete 25 delete 20 delete 30 "°P [-1] empty
stack
H wri function to i n item into th ?
Algorithm  push Case 1: Insertion not possible
// Function to insert item into the stack {0/ Input: item : element to be inserted STACK SIZE= 4
void push ( int item ) -
{ . // Global/Parameters : top, stack |10 ] top[3) [ 10
Il.";((:ht?kiir OS?];%O[? gi;tEacE( 1) // Check for overflow of stack 21| 25
P AL if ( top = STACK_SIZE - 1) a1 20
printf (“Stack Overflow” ); print ( “Stack Overflow” ) 01 [ 30
return; return
} Overflow
/I Increment top by 1
. IJl:f:ement top by 1 Py Case 2: Insertion possible
Ui top= top + 1 /
// Insert an item into the stack top += 1 / Before After
stack [ top | = item; top++ / t+top 131 3]
OR // Insert an item into the stack 2] top[2] | 25
stack [ top | = item top[1] | 20 (1] 20
// Insert an item into the stack
stack [++top | = item; 01| 30 [0]| 30
} item = 25




/I Function to delete an item from the stack
void pop ()

/! Check for underflow of stack
if ( top== -1)

printf (“Stack Underflow”);
y return;

Algorithm pop Case 1: Deletion not possible
. //Input: none 3]
| // Global/Parameters: top, stack[10] [2] Underflow
/I Check for underflow of stack 1]
if( top= -1) [0]
print (“Stack Underflow”) top [-1] empty
return stack

// Decrement top by 1

printf (“Item deleted = %d <, stack[top]); || print (“Item deleted = , stack [top] )

Case 2: Deletion possible
// Decrement top by 1

= -1: Brfore After
top = top - 1; top=top-1 /
top = 1 / 131 3]
OR top— / —top top[2] | 25 [2]
|printf (“Item deleted = %d “, stack[top—]); (11| 20 | top[1]] 20
. [01| 30 [0]| 30
printf (“\n*);
Delete 25

|

// Function to display the contents of stack
void display( )
{

int i
/I Check for empty stack
if ( top = -1)

print (“Stack is empty” );
return;

H

Algorithm  displaly Case 1: Display not possible
{ //Input: none 3]
8 tack [ 1

| // Global: top, stack[10] [2] R e
/I Check for empty stack 1]

if( top= -1) [0]

print ( “Stack is empty” ) top [-1] empty

return stack

printf ( “Stack : “);

for (i = 0; i <= top; i++)
printf (“ %d %, stack [i] );

printf (“\n “);

#include <stdio..h>
#include <stdlib.h>

#define STACK SIZE 5

int top = -1;

int stack [10];

// Function to insert an item into the stack
void push ( int item )

// Write the complete function
}

// Function to delete an element from the stack
void pop ()

// Write the complete function

}

// Function to display the contents of stack
void display ()

// Write the complete function

}

print (“Stack : “)
- Case 2: Display possible

| print stack [i]| Vi = 0 to top

131
print ‘“\n” top2]| 25

[11] 20

[0]] 30

}foid main ()
int choice, item;
// Perform stack operations any number of times
for (35)
{

printf (“1:Push 2:Pop 3:Display 4:Exit: “);

scanf (“%d “, &choice );

switch ( choice )

t case 1: printf (“ Enter the item : “);
scanf (“%d %, &item );
push (item ) ;
break;

case2: pop ( );
break;

case 3: display ();
break;

default: exit (0);

saividya.ac.in



#include <stdio..h>

- . void main ()
#include <stdlib.h> {
int STACK SIZE = 1 int choice, item;
- - stack = (int * ) malloc (STACK SIZE * sizeof (int ) );
int top = -1; for (33)
int  *stack; {
. . . . printf (“1:Push 2:Pop 3:Display 4:Exit: “);
1/ lf:nctlmlll to.mtse.l;t item into the stack scanf (“%d %, &choice );
s TG T )] switch ( choice )
/f Check for overflow of stack {

if ( top = STACK SIZE - 1) case 1: printf (“ Enter the item : “);
{

scanf (“%d *, &item );
s o
- bl

y  stack = realloc (stack, STACK_SIZE  sizeof (int)); break;

case2: pop( );

// Insert an item into the stack break;

stack [+-+top | = item; case 3: display ();
. bl
break;

default: exit (0);

}
}
Algorithm  push Case 1: Insertion not possible
// Function to insert item into the stack | /0 // Input: item : element to be inserted STACK_SIZE= 4
" s s Y .
:'md push (int item, int “top, int stack]) ) // Global/Parameters: top, stack [10] top(3] [ 10
/I Check for overflow of stack
5 /I Check for overflow of stack [2]1] 25
lf( *top == STACK_SIZE -1 ) if( top =— STACK_SIZE =1l ) 11 20
printf (“Stack Overflow” ); print ( “Stack Overflow” ) [0]| 30
return ; return
H Overflow
/! Increment top by 1
| bt Lt Case 2: Insertion possible
(*top) ++; top= top + 1 /
// Insert an item into the stack top +=1 / Before After
stack [*top | = item; top++ /| +itop [3] 131
OR // Insert an item into the stack 21 top[2] | 25
stack [ top | = item top[1] | 20 | 20
// Insert an item into the stack 0
stack [++ (*top)] = item; (0] 30 [0]] 30
} item = 25

saividya.ac.in



// Function to delete an item from the stack Algorithm  pop Case 1: Deletion not possible
E’Oid pop (int *top, int stackl]) [ //Tnput: none 3]
/I Check for underflow of stack lob ters: t:
ET=D W {0 // Global/Parameters: top, stack[10] 12] Underflow
// Check for underflow of stack [1]
printf (“Stack Underflow” ); if( top == - 1) [0]
return ; print ( “Stack Underflow”) top [-1] empty
}
return stack
intf (% =%d* * ;|| print (“Item deleted = «, stack [to
printf (“Item deleted = %d , stack[*top]); || print (“Item delete s [top] ) Case 2: Deletion possible
// Decrement top by 1 /I Decrement top by 1
*top = *top = 1; Brfore After
top=top-1 /
top= 1 / 3] 131
L top— / —top top2] | 25 2]
|printl' (“Item deleted =% d*,stack[(*top)—-]); [ 20 top[1]| 20
0 0
printf (“\n“); 071 30 1130
Delete 25

saividya.ac.in|

// Function to display the contents of stack Algorithm  displaly Case 1: Display not possible
¥OId display ( int top, int stack[] ) @/ nput: none B
int i
- ./l Global/Parameters: top, stack[10] [2] .
Stack is empty
;lffht?k ir f';]l;ty BERCK /I Check for empty stack 1]
P if(top= -1) [0]
printf (“Stack is empty” ); print ( “Stack is empty” ) top [-1] empty
} return ; return stack
printf ( “Stack: “); rint (“Stack : “
( ) - - ) Case 2: Display possible
for (i =0; i<=top; i++) print stack[i]| Vi = 0 to top
printf (“ %d %, stack [i] ); 3]
print “\n” top[2] | 25
printf ( “\m “*); 1] 20
} 01 30




LDesignj // Input: String str

i1 i i i
(0] 1] [2] 3] [4] [5]

[R[A|D|A|R|[W|sr R A|[D[A|R

01 1 21 131 M@ I8l
top [4]
top[3]
top [2]
top [1]
top [0]

top[-1] Stack
Vi= 0 to str[i] !=\0"

Clstaek [++top] = str[i] |

Algorithm Palindrome ( String )

Global / Parameters : stack, top
Step 1: // Insert each character on to stack
Vi= 0 to str[i] I=°0’
stack [++top] = str[i]
end for
Step 2: // compare each character of string with stack
Vi= 0 to str[i] !=°0’
if (str[i] = stack [top— ] ) continue
print (str, “:Not a Palindrome®)
return
end for

print ( str, “:is a Palindrome*)

Step 3: // Finished
return

saividya.ac.in

||

#include < stdio.h >
void palindrome ( char str[])
int i;

// Insert each character on to stack

for (i=0; str[i] !=90"; i++)

stack [++top] = str[i];
// compare each character of string with stack
for (i=0; str[i] I=90"; it++)

if (str[i] ==stack [top-- ] ) continue;

printf (“%s :Not a Palindrome*, str );
return ;

printf ( “%s :Palindrome “, str);

void main ()
{ char str [10] ;

printf ( “Enter the string: “ );
scanf ( “%[™n]” , str);

palindrome ( str ) ;



Infix expression: In an expression, if an operator is in between two operands, the expression is called an infix expression.
%+ The expressions may be parenthesized or un-parenthesized.

+ Parenthesized infix expressions :(a+b),(6+(3-2)*5)"2+3

# Un-parenthesized infix expressions : a+b, X*"Y*Z-M+N+P/Q

Postfix expression: In an expression, if an operator follows the two operands, the expression is called a postfix expression.
«+ Postfix expression is also called suffix expression or reverse polish expression.

< The expressions are always un-parenthesized.
< Forexample, ab+, ABC-D*+ E “"F+,XYZS§ $M-N<+PQ/+

Prefix expression: In an expression, if an operator precede the two operands, the expression is called a prefix expression.

<+ Prefix expression is also called polish expression.

< The expressions are always un-parenthesized.

< Forexample, +ta b, + $ + A*-BCDEF,++-F$SXSYZMN/PQ

saividya.ac.in

Evaluation of infix expression is not recommended because of Infix: (6 +(3-2)*5)22+3
the following reasons:
+» We need to repeatedly scan from left to right and right to I S —
left to identify the part of the expression to be evaluated. (6 + |1 * Sl )r2+3
«+ Requires the knowledge of precedence of operators and ____________E________________________
associativity of the operators (6+5)"2+3
e
« The problem becomes more complex with the introduction of 1
parentheses in the expressions because they change the @ |======————— e e e e = ———————
order of precedence. 1m~2+3
P —
«» Designing the algorithm or the program is very difficult 121
using this traditional technique. @~ = T o T TTTTTETTETTToTTTomommmmmmmmasemems
121+ 3
Advantage: —
Easy for us to read and understand these type of expressions. 124
So, when we write the expressions, we use these type of expressions.
saividya.ac.in
((A+(B-C)*D)"E+F) T4 F +
l_'_l
T TI=BC - T3E ~ F +
------------------------------------- + A +
((A+T1*D)~E+F) e
— et ps| ATLRS *ENFY
__________ T_2 __________________:______. |A BC-D*+ E AF + I Postfix Expression
((A+T2)~E+F) or
I_'_.I
T3 T3=AT2+| [ABC-D*+ ES§ F + | Postfix Expression
(T3*E+F)
TI4 T4=T3 E *

(T4 + F)



X*"Y*"Z-M+N+P/Q TS T3 +
TAN+PQ/+

I N-Yz- ImmM-N+PQ/ +
XA ATL-M+N+P/Q X TI"M-N+PQ/ +
T2 T™=X T1* IX YZ*»**"M-N+PQ/ +| Postfix Expression
T2 MAN+P/ q ] or
[Xx YZ$ssM-N+ P Q/ +| Posthix Expression
T3 T3=P Q /
T2 -M+ N+ T3
e T4=T2 M -
T4
T4+ N+ T3 T5=T4 N +
|_'_.l
T5
T5 + T3
T5 T3 +

YV LV VY
Infix] (JA|+] (|B]-|C]|)]|=]ID]) Fully Parenthesized

Stack[] | F (s[top]) > G (infix[i]) | Postfix[] F G

- 2 > 9 infix[i] Stack /P

# 0 - 7 # 1 .

(A 8§ - 1 |A R

# ( (U 1 ) g

#(+ 2 - 9 L| + - 2 1 4+2-3

it I o wrw w PRV
>

#(+ ( 0 > 1 R| ~ § § 5 27342 2°

#(+ (- 2 > 7 L |operands 8 7

#(+(-C 8 > 0 C

#0+ (- 2 > 0 i L ( . 2

#(+( 0 > 0 Precedence table

#(+( 2 > 3

#(+* 4 > 7

#(+*D 8 > 0 D

#(+ 4 > 0 *

#(+ 2 > 0 I+

#( 0 > 0

51 A[B[CI- D[+ F




VS

fix[al ] ([B]-Jc])f<fo] [ [ | ||

Algorithm infix_2 postfix (infix, postfix)

#Sm‘:k“ F(s[to;;])>(j(inﬁ;[i__]) Prrenll ol
= Y
Y 3 = T s [++top ] #
# -1 > 1
# + 2 > 9 ¥V i=0 to infix[i] != “\0°
#+ ( 0 > 7 - - N
hile (F ( s[t > G (infi
T —T5 AL Gl o G BL )
#+ ( 0 > 1 |postfix[]++]=s[top——];
# + (- 2 > 7
Fr(-C 8 > 0 c if (F (s[top] ) != G (infix[i] ))
#+ (- 2 > 0 . s[++top] = infix [i]
#+ ( 0 > 0 else
# + 2 > 3 top —
# + 4 > 7
#+*D A(B|(C|- D while (s[top] = “#)
e " [postfix [ j++] = s [ top—] ;|
#
A[B|C -IBTT postfix [ j ] = “\0°

/* Insert the function: infix 2 postfix (infix, postfix) */

void infix 2 postfix ( char infix[], char postfix[] );

{

int  top, i, j=0;

char s[20];

top = -1;

s [++top | = “#5

for( i=0; infix [i] != \0’; itt+)

while ( F(s[top] ) > G (infix[i]) )
postfix [ j++] = s [ top -] ;

if (F(s|top]) != G (infix[i] ) )

s [++top | = infix [1i|;
else
} top —;
while (s[top] != ‘¥ )
postfix [ j++] = s[top--];
postfix [j| = 40°;



/* Insert the function: infix_2_postfix (infix, postfix) */
void infix_2 postfix ( char infix[], char postfix[] );

/* Stack precedence function: F */  /* Input precedence function: G */ . . F G
int F (char symbol ) int G(char symbol ) infix[il  Stack I/P
¢ switch ( symbol ) t switch ( symbol ) # -1 .
case ‘#: return -1; case °) : return 0; ) 0
case ‘+°: case 4+’ : L] + - 2 1
case ¢’ : return 2; case ¢’ : return 1; L * 4 3
case ‘*’: case ‘% : R| ~ s 5 6
case ‘/° : return 4; case ‘/ : return 3; L [operands P =
case ‘8§ : case ‘§:
case ‘A’: return 5; case ‘A’: return 6; = ( 0 2
default : return 8; default : return 7; Precedence table
case “(’ : return 0; case ‘(’ : return 9;
} y
}
[ ] L]
void main ()
L]
char infix|20], postfix[20] ;

}
Test Case 1:

printf (“Enter infix expr: ” );

scanf (“%s” , infix );

infix_2 postfix ( infix, postfix);

printf (“Postfix: ” );

printf (“%s\n” , postfix );

Enter infix expression: ((A+(B-C) *D)*E+F)
Postfix:

Test Case 2:

ABC-D*+E*F+

Enter infix expression: X*Y*Z-M+N+P/Q
Postfix: XY Z* *"M-N+PQ / +



_

((A+(B-C)*D)*E+F)

;'_l
T1 Ti=-BC
((A+T1*D)*E+F)
—
T2 T2=*Tl D
((A+T2)~E+F)
L'_l
——— 1 I3=+AT2 |
(T3I"E+F)
T'4 T4="T3 E
(T4 + F)

T1 TI=*Y Z
X ATL-M+N+P/Q
T2 T2= X T1
T2-M+N+Pfg
T3 T3= / P Q
T2 -M+ N+ T3
T4= -T2 M
T4
T4+ N+ T3 T5= +T4 N
| N
T5
T5 + T3
Infix:A + ( B - C ) = D
(pl*Plcl-IB]d+JAl T T T 1]
Stack[] F (s[top]) > G (inflx@) Prefix|]
i -1 > 7
# D 8 > 4 D
= -1 > 4
# * 3 > 9
#*) 0 - 7
#*)C 8 > 2 C
# *) 0 > 2
# * ) - 1 > 7
#*)-B 8 > 0 B
#4) - 1 > 0 -
# %) 0 = 0
# * 3 > 2 5
# -1 > 2
# + 1 > 7
7T A D[CB[-[*]A
# + +
# +|Al*|-BCID

+ T4 F

+ ~"T3EF

+ A

A

+

+ AT2 E F

+A*T1IDEF

[

+A*-BCDE F|

Prefix Expression

or

+A*-BCDE F|

Prefix Expression

+ T5 T3
++ T4 N/PQ

++ -T2M N/ PQ
++ - A" XTIMN/PQ
|++ -*"X*"YZMN/PQ I Prefix Expression
or
[++-8$XSYZMN/PQ|  PrefixExpression
A+(B-C)*D I
*
T1 %{E-
G
A+T1* )
[ f}gﬁ’ (
12 Preceaence tapic =
A+ T2 u; o— 0
+A T2
+A* Tl D

saividya.ac.in



Infix: A + ( B - C ) * D

flPDlcl-fefd-Jal T T 1 1]

Algorithm infix_2 prefix (infix, prefix)

Stack[] | F (sitop]) > G (infix[i]) | _Prefix]] top = -1
# - > 7 s[+t+top | = “#
#D ¢ > 4 D)
# 1 - 4 Vi=0 to infix[i] != “0°
# * 3 > 9 [ X . q
# * ) 0 - 7  While (F (s[top] ) > G (infix[i]))
e | prefix [j++] = s[top— ;|

) C 8 > 2 C H

# * ) 0 > 2
# * ) - 1 > 7 if (F (s[top] ) != G (infix[i] ))
4*)-B| 8 > 0 B s [++top] = infix [i]

#* ) - 1 > 0 - else

# il ) 0 - 0 top -[:luTitIE]

# * 3 > 2 %

# a1 > 2 . e

e T - 7 whlle(s.[top] 1= %)

#+A [D[CB[-[*A C|MIJH]=S[t0p--];|

# + +

# +[A[*[-BlcD prefix [j] = 0

saividya.ac.in



/* Insert the function: infix 2 prefix (infix, prefix) */

void infix 2 prefix ( char infix|[], char prefix [] )

{
int  top, i, j =0;

char s[20];

top = -1;

s [++top | = “#°;

for( i=0; infix [i] != “\0’; it+)

while ( F(s[top] ) > G (infix[i]))
prefix [j ++] = s [ top -] ;

if (F(s[top]) !'= G (infix]i] ) )

s [++top | = infix [i];
else
} top —-;

while (s[top] != ‘# )
prefix [j ++] = s[top--];

| prefix [j] = “\0’;

/* Insert the function: infix 2_prefix (infix, prefix) */
void infix_2 prefix ( char infix[|, char prefix [] );
F G

/* Stack precedence function: F*/  /* Input precedence function: G */ infix[i] Stack I/P
int F (char symbol ) int G(char symbol ) "
-1 =
{ switch ( symbol ) ¢ switch ( symbol) ) 0 o
case “‘#’: return -1; case )’ : return 9;
L] + - 1 2
case ¢)’ : return 0; case “+: -
" case ¢’ : return 2; L / 3 4
case H
case ¢’ : return 1; o G g Rf ~s 6 5
s case °/ : return 4; L |operands | 8 7
case 5
case ‘’ : return 3; case °‘$’: L ( - 0
PP case ‘A’: return 5;
case ‘§$’: Precedence table
case “A’: return 6; default : return 7;
) default : return 8; } case ‘(’ : return 0;
}

}

Dr. Padma AM Sai Institute of Technol: B download: nandipublications.co



void main ()

char

char

infix[20], prefix[20] ;
rev_infix[20], rev_prefix[20] ;

printf (“Enter infix expr: ” );
scanf (“%s” , infix );

strrev ( rev_infix, infix);

infix 2 prefix ( rev_infix, rev_prefix) ;

strrev ( prefix, rev_prefix);

printf (“Prefix: ”);

printf (“%s\n” , prefix );

}

PostﬁxIGISIIISIIIZIIIIIII
VIV

Stack | op2 | opl | result = opl 9 op2
6
6 3
6 3 2
6 3 2|2 3 result= 3 -2 =1
6 1
6 1 5
6 + 5| 5 1 result=1 *5 = §
6 5
6 5 5 6 result= 6 +5 = 11
11
1 2
H 2 2 1 result= 11 ~2 = 121
121
121 3
B’ 3 3 121 |result= 121+3 = 124
124

Result = 124

Infix: (6 +(3-2)*5)"2+3
Postfix: 6 3 2 -5 * +2 ~ 3 +

I_'_I

1 3-2=1
615*+2*3+

lﬂ_l

5 1* 5=15
6 5+2 3+
l_'_l

11 6+ 5= 11
12 ~ 3 +
—

121 1m» 2= 121
121 3 +
—

124 121 + 3 = 124




postfix: [6l30121-1s1- 1= 121131 Algorithm compute (operandl, operator, operand2)

T L switch ( operator )

case “+” : return operandl + operand2
op2 | opl | result = opl op2
r Siack L s p1 & op case ‘> : return operandl - operand2
6 3 case “** ; return operandl * operand2
6 3 2 case ¢/’ : return operandl / operand2
6 3 2| 2 3 result= 3 -2 =1 A
6 1 case H
s 1 5 case ‘$’ : return pow ( operandl, operand2)
end switch
6 + 5| 5 1 result= 1 *5 = 5
6 5 Algorithm evaluate ( postfix )
6 = 5 | 6 |result= 6 +5 = 11 top = -1
11 ¥V i= 0 to postfix [i] != A0’
1 2 if ( postfix[i] is digit )
H 2 2 11 result= 11 22 = 121 stack [++top ] = postfix [i] - ‘0’;
121 else
1213 operand2 = stack [ top--|
R’ S 3 [121 [result= 121+3 = 124 e LI )] )
124 stack[++top | = compute (operand1, postfix|i], operand?2 )

Result = 124 return stack [ top--]|

saividya.ac.in
#include <stdio.h> . .
#include  <math.h> void main ()
double compute (double operandl, char operator, double operand2 ) char postfix[20] ;
{  switch (operator ) double result;
{ case ‘“+” : return operandl + operand2; ) -
case -* : return operandl - operand2; MS‘“Eﬂ:ﬂ postfix expr: ” );
case **° ; return operandl * operand2; scanf (“%s” , postfix );
case “*? ; return operandl / operand2;
case ‘A% ; result = evaluate ( postfix );
! } case ‘§’ : return pow ( operandl, operand2 ); rintf (“Result = %If\n” , result );
double evaluate (char  postfix []) }
int i, top = -1; Test Case 1:
double  stack[20], operandl, operand2; Enter postfix expression: 6 32-5*+2 * 3 +
for (i=0; postfix [i] != 0’ ; i++) { Result = 124.0
if ( postfix[i] >= ‘0’ && postfix[i] <= ‘9*)
stack [++top | = postfix [i] - “0’; Test Case 2:
else { 5 — -
e e Enter postfix expression: 12+3-21+38§
operandl= stack [ top--]; Result = -27.0

) stack [++top] = compute (operandl, postfix[i], operand2 );

}
} return stack [ top--|; [No Title]

saividya.ac.in



