Disadvantages of singly linked lists
< Using singly linked list and circular singly linked list, it is possible to traverse the list only in one direction. Hence,
they are called one-way lists. It is not possible to traverse the list backwards i.e., two-way traversing is not possible.

< Insertion to the left of a designated node x is not possible. This is because, there is no way to find predecessor of x.

[I] x
1000 1000 9000 1500 2500

[so] ——110 | =20 ——{30] ——]40]0 |

+ In a singly linked list, deleting the specified node x is not possible unless we know the address of the first node.
This is because, we do not know the address of predecessor of x. Given the address of the first node, we need to find
the predecessor of x and then only we can delete the specified node x which is time consuming.

The above disadvantages can be overcome using doubly linked lists.

Definition: A doubly singly linked list is a special type of linked list where traversing is done from left to right or right to left.
< Since traversing can be done from both the ends, it is also called two-way linked list.
< Each node has three fields namely:
= info : contains the data to be manipulated.
= llink : contains the address of left node.
= rlink : contains the address of right node.

¢ The pictorial representation of doubly linked list is shown below:

Ex 1: Empty list Ex 2: List with one node Ex 3: List with more than one node
first first first last

I?'1000 I?looo 2000 1500 3000‘?I
foT 25 [T 20 [] 50 [30 [w)

llink info rlink

Algorithm display (first
g play () Case 1: List is empty

Step 1: //Check for empty list first
if (first == NULL)
print (“List is empty)
return
end if
Step 2: //Obtain the address of first node Case 2: List is existing
Sur = flxst first cur cur cur cur cur

Step 3: //visit each node and print 1000 2000 1500 3000

while (cur = NULL) fof10 | =1 |20 [F=L |30 | T[40 |\

print (info[cur])
cur = rlink|[cur]
end while

Step 4: //Finished 10 20730740
return

saividya.ac.in

void display (NODE first)
{

Algorithm display (first) NODE cur;
Step 1: //Check for empty list printf (“List : ?);

St L), //Check fe ty list

rint (“List is empty ” //Check for empty Lis
ll')eturn(R if (first == NULL)

end if printf (“Empty ”);
Step 2: //Obtain the address of first node } return;

cur = first

//Copy the address of first node
cur = first;
Step 3: //visit each node and print

while (cur != NULL)
print (info[cur])
cur = rlink[cur]

/Ivisit each node and print
while (cur != NULL)

printf (“%d --->*, cur —>info);

end while .
) cur = cur —> rlink;
Step 4: //Finished }
return

saividya.ac.in

To display doubly linked list from the last node
void display (NODE last)

{
NODE cur;

printf (*“List : >);

//Check for empty list

if (last == NULL)
printf (“Empty >);

return;

3

//Copy the address of last node
cur = last;

//visit each node and print

while (cur != NULL)

¢ printf (*“%d —> *»°, cur —>info);
cur = cur —> llink;

Case 1: List is empty Before | After first
. .
1
first temp 1
List is empty . ' 040 fo]
I
ﬂmm O .
i first = insert rear (item, first)
item = 40 1
Case 2: List is non-empty Before Insertion
first
1000 2000 1500 3000
fof2s [Tt [20 [7= [50 | F=4-[30 |\
e After Insertion |
first
temp
1000 2000 1500 3000
foT2s T T20 [T50 [G T30 [Wh—fo[40 To] @
I__LI item = 4¢
cur cur cur

Bold

wasc 1: List is empty Before : After first
temp , rE
+ first i
rs
T Tl © ek
item = 40 List is empty i first = insert_rear (item, first)
Case 2: List is non-empty Before Insertion
first
1000 2000 1500 3000

fof2s | T [20 [= [50 | =4[30 [\o]

After Insertion

first
1000 2000 1500 3000

@© [T 40 Twf ol 25 [F=FT20 [50 [=30 []

item = 40

// Function to insert item at the rear end
NODE insert_rear (int item, NODE first)

{ NODE temp, cur;

/I Create a node with item in it
temp = getnode ();
temp —> info = item;
temp —> llink = temp —> rlink = NULL;
// Insert the node for the first time
@ if (first == NULL) return temp;

// Find the address of last node
cur = first;
@ zvhile(cur —> rlink != NULL)

) cur = cur —> rlink;

// Insert the node at the end of the list
cur —> rlink = temp ;

temp —> llink = cur;

// Return address of the first node
@ return first;

saividya.ac.in

// Function to insert item at the rear end
NODE insert_front (int item, NODE first)

t NODE temp;

// Create a node with item in it
temp = getnode ();
temp —> info = item;
temp —> llink = temp —> rlink = NULL;
// Insert the node for the first time
@ if (first = NULL) return temp;

// Insert the node at the front of the list
temp —>rlink = first ;

@ first—llink = temp ;

// Return address of the first node
}® return temp;

saividya.ac.in

// Function to delete an item from the rear end of the list
NODE delete rear (NODE first)
NODE cur, prey;

5 sps first /I Check for empty list
lse 1: Listis empty 0 @ if (first =— NULL)

printf (“List is empty\n”);
} return NULL;

.e 2: Only one node in the list . first @ @ // Delete if there is only one node

if (first—> rlink =— NULL)

I
' printf (“Item deleted = %d \n «, first —> info);
mmm } free (first), return NULL;
| // Find address of last node
.f 3: More than one node in the Iﬂ cur = first;
first @ @ while (cur —> rlink != NULL) cur = cur —> rlink;
;l‘: , ‘: ’ <: > prev = cur —> llink; /I Obtain last but one node
1000 AL 1500 000 /l Make last but node’as last node
pof4o | T 25 [G4 [20 [[50 o=t [N @nrev—>gvlviv1vlvlvg=NULL;
! printf (“ Item deleted = %d \n “, cur —> info);
@ free (cur); //Delete the last node
prey’ cur

return first;

first /I Check for empty list
@ if (first == NULL)
printf (“List is empty\n”);
} return NULL;
first @ // Delete if there is only one node
if (first—> rlink == NULL
if (firs rlin!)
printf (“ Item deleted = %d \n “, first—> info);
m' I‘ m } free (first), return NULL;
. | l_ // Find address of second node
€ 3: More than one node in the @ cur = first —> rlink;
// Make second node as the first node
1000 2000 1500 3000 cur —>1llink = NULL;
‘Iﬂ_ —M ‘I.__'I_ \0
0| 2 I I 2 | I gl I I Al I I // Delete the first node
printf (“ Item deleted = %d \n “, first —> info);
@ free (first);
cur
@ }@ return cur; // Return second node as first node

saividya.ac.in

#include <stdio..h> void main ()

#include <stdlib.h> int choice, item;
struct node NODE first;
{ i first = NULL;

int info;

for (35)
t printf (“1:Insert Rear 2:Insert Front 3:Delete Rear : “);
printf (“4:Delete Front 5:Display 6:Exit : <);
scanf (“%d “, &choice);

struct node * llink;
struct node * rlink;
I8

typedef struct node * NODE; switch (choice)
case 1 : printf (“ Enter the item : “);
NODE getnode ()3 scanf (“%d “, &item);
first = insert_rear (item, first) ;
NODE insert rear (int item, NODE first); break;
NODE insert front (int item , NODE first); case 2 : printf (“ Enter the item : “);
scanf (“%d “, &item);
NODE delete_rear (NODE first); first = tasert front front (item, first) ;
9
NODE delete front (NODE first); case3 : first = delete rear (first);
break;
void display (NODE first) ; case 4 : last = delete front (first);
break;
case 5 : display (first);
break;

} default: exit(0);

saividya.ac.in

Disadvantages of normal doubly linked lists
« To find the address of the last node, we need to traverse the list till the end. This is time consuming.

¢ Insertion and deletion at the rear end is time consuming.

The above disadvantages can be overcome using circular doubly linked lists.

Definition: A circular doubly singly linked list is a doubly linked list where the right link of last node contains address of the
first node and left link of the first node contains address of the last node.

< The pictorial representation of circular doubly linked list is shown below:

Ex1: Emptylist Ex 2:List with one node Ex 3: List with more than one node
first
first
first
=
2000 1000 2000 1500 43000

[0 [F=L T [F=ET30]]

Algorithm display (first)

Step 1: //Check for empty list
if (first == NULL)
print (“List is empty *)
return
end if

Step 2: //Obtain the address of first node
cur = first

Step 3: //Obtain the address of last node
last = llink|first]

Step 4: //visit each node and print
while (cur != last)
C print (info[cur])
cur = rlink[cur]
end while
print (info[cur])

Step 5: //Finished
return

Case 1: List is empty

first

Case 2: List is existing

first ur cur cur curi last
00

'I%_ 2000 ?500 % F
[L [n G o]

10 20 30740

saividya.ac.i

Algorithm display (first)

Step 1: //Check for empty list
if (first == NULL)
print (“List is empty)
return
end if

Step 2: //Obtain the address of first node
cur = first

Step 3: //Obtain the address of last node
last = llink|[first]

Step 4: //visit each node and print
while (cur != last)
C print (info[cur])
cur = rlink|[cur]
end while
print (info[cur])

Step 5: //Finished
return

void display (NODE first)
{

NODE cur, last;
printf (“List : ”);
//Check for empty list
if (first = NULL)

printf (“Empty »);
return;

}

//Obtain the address of first node
cur = first;

//Obtain the address of last node
last = first—> llink;

/Ivisit each node and print
while (cur != last)

printf (“%d --->”, cur —>info);
cur = cur —> rlink;

printf (“%d \n”, cur —>info);
}

saividya.ac.in

Case 1: List is empty

first
List is empty

|_|i)E|_|

item =40

Case 2: List is non-empty

last
first v

1000 2000 1500 3000)

25 [20 | ==L |50 [T30]
1]

v
n

item =40

temp

// Function to insert item at the rear end
NODE insert rear (int item, NODE first)

{ NODE temp, last ;

// Create a node with item in it

temp = getnode ();

temp —> info = item;

temp —> llink = temp — rlink = temp;
// Insert the node for the first time

if (first == NULL) return temp;

// Find the address of last node
last = first->llink;

// Insert the node at the end of the list
last > rlink = temp ;

temp —> llink = last;

temp —> rlink = first;

first — llink = temp ;

// Return address of the first node
return first;

saividya.ac.in

Case 1: List is empty temp

first
List is empty

40

Underline

item =40

Case 2: List is non-empty

tem

first

A4
1000 2000

l last
1500 3000

40 -F

sz5|‘|2|-|20|-|le50|‘|2|-|30

\"2

item =40

7A)

// Function to insert item at the front end
NODE insert front (int item, NODE first)

{ NODE temp, last;

// Create a node with item in it

temp = getnode ();

temp — info = item;

temp —> llink = temp —> rlink = temp;
// Insert the node for the first time

if (first == NULL) return temp;

// Find the address of last node
last = first->llink;

// Insert the node at the front end of list
temp—>rlink = first;

first — llink = temp ;

last — rlink = temp ;

temp —> llink = last;

// Return address of the first node
return temp;

saividya.ac.in

.se 1: Listis empty

e2: Only one node in the list first

le 3: More than one node in the]_

first X

¥
fa0 | T Izslﬂzl-lzol-lpr-;l-%L
T rey

// Function to delete an item from the rear end of the list
NODE delete_rear (NODE first)

NODE last, prev ;

/I Check for empty list

if (first == NULL)
printf (“List is empty\n”);
return NULL;

/l Delete if there is only one node
if (first —> rlink == first)

printf (“Item deleted = %d \n «, first—> info);
free (first), return NULL;

last = first—> llink; /I get last node

prev = last —>1link; // Get last but one node

// Make last but node as last node

prey—>rlink = first ;

first —>llink = prey ;

printf (“ Item deleted = %d \n “, last—> info);
free (last); // Delete the last node

return first;

saividya.ac.in

// Function to delete an item from the front end of the list
NODE delete_front (NODE first)

{ NODE last, second ;
3 iog s first /I Check for empty list
.se i List is empty if (first =— NULL)
printf (“List is empty\n”);
} return NULL;
. i i first // Delete if there is only one node
e 2: Only one node in the list
if (first —> rlink == first)
printf (“ Item deleted = %d \n *, first—> info);
} free (first), return NULL;
‘e 3: More than one node in the]ﬂ last = first—> llink; /I get last node
first second=first—>rlink; // Get second node
l // Make second node as the first node
I :I last —>rlink = second ;
- 25 I 20 I_M— I 50 I 30 second —> llink = last;
T second last printf (“ Item deleted = %d \n “, first—> info);
v free (first); //Delete the first node
AN) return second;
saividya.ac.in

Strikethrough

‘

#include <stdio..h> void main ()
#include <stdlib.h> int choice, item;
struct node NODE first;
{ . . first = NULL;
int info; for (35)

struct node * llink;

diet oo © di printf (“ 1:Insert Rear 2:Insert Front 3:Delete Rear : “);
SRS

vrintf (“4:Delete Front 5:Display 6:Exit : ¢);
scanf (“%d “, &choice);

5

typedef struct node * NODE; switch (choice)
case 1 : printf (“ Enter the item : «);
NODE getnode ()3 scanf (“%d “, &item);
first = insert rear (item, first) ;
NODE insert rear (int item, NODE first); break;
NODE insert front (int item , NODE first); case 2 : printf (“ Enter the item : “);

scanf (“%d “, &item);
first = insert_front (item, first) ;
break;
case 3 : first = delete_rear (first);
break;
void display (NODE first) ; case 4 : first = delete_front (first) ;
break;
case 5 : display (first);
break;
} default: exit(0);

NODE delete rear (NODE first);
NODE delete _front (NODE first);

saividya.ac.in

Definition: A circular doubly singly linked list with header is a circular doubly linked list where the right link of last node
contains address of the header node and left link of the header node contains address of the last node.

< The pictorial representation of circular doubly linked list is shown below:

Ex 1: Empty list Ex 2: Non empty list
head

head
v
Iﬁ SLrT‘-Izl_nol-llesol-lzl_lsol

Algorithm display (head)

Step 1: //Check for empty list Case 1: List is empty
if (rlink[head]== head) head
print (“List is empty)
return
end if

Step 2: //Obtain the address of first node
cur = rlink[head]

Case 2: List is existing

Step 3: //visit each node and print head cur
while (cur != head) cur u cur cur
< print (infolcur]) I? I;I
cur = rlink|[cur]
end while [20 [T [30 [G40 ||

Step 5: //Finished
return 20 30 40

saividya.ac.in

saividya.ac.in

Algorithm display (head)

Step 1: //Check for empty list
if (rlink[head]== head)
print (“List is empty ”)
return
end if

Step 2: //Obtain the address of first node
cur = rlinklhead]

Step 3: //visit each node and print
while (cur != head)

C print (info[cur])
cur = rlink|[cur]
end while

Step 5: //Finished

return }

void display (NODE head)
{

NODE cur;
printf (“List : ”);

//Check for empty list

if (head->rlink== head)
printf (“Empty ”);

} return;

//Obtain the address of first node
cur = head->rlink;

/Ivisit each node and print
while (cur != head

printf (“%d --->*, cur —info);
cur = cur —> rlink;

// Function to insert item at the rear end
NODE insert_rear (int item, NODE head)

{ NODE temp, last;

/I Create a node with item in it
temp = getnode ();

templ temp —> info = item;

// Find the address of last node
last = head->llink;

\

40

Fd_‘IZI-I20I‘I1‘—’LI50I‘IT-!I-I30 i

AV
n

item = 4(

// Insert the node at the end of the list
last = rlink = temp ;

temp—> llink = last;
temp —> rlink = head ;
head —> llink = temp ;

// Return address of the head node
return head;

// Function to insert item at the front end
NODE insert_front (int item, NODE head)

¢ NODE temp, first;

// Create a node with item in it

temp
L 50 —I item =50

-

A

temp = getnode ();
temp — info = item;

// Find the address of first node

first

v
Llj_’J_l:lzLISOI'Iztl—lsol =40 |]

first = head->rlink;

// Insert the node at the front end of list
temp—>rlink = first;

first — llink = temp ;
head — rlink = temp ;
temp —> llink = head;

// Return address of the header node
return head;

// Function to delete an item from the rear end of the list
NODE delete_rear (NODE head)
{ NODE last, prey ;
/I Check for empty list
[No Title] . .
.s Y ict is empty . head if (head—>rlink = head)
printf (“ List is empty “);
return head;
last = head—> llink; /I get last node
prey = last —> llink; /I Get last but one node
‘ 2: List is existi . /I Make last but node as last node
Bt 1S existing rev—>rlink = head ;
hea X head—> llink = prey ;
* printf (“ Item deleted = %d \n “, last—> info);
free (last); //Delete the last node
Iu I -IZL I 25 I -M—I 20 I 50 0) return head;
==
ast

// Function to delete an item from the front end of the list
NODE delete_front (NODE head)
{

NODE first, second ;

. /I Check for empty list
if (head —>rlink == head)

printf (“ List is empty“);
return head;

}
‘e 3: Listis existing . first= head —>rlink; /I get first node
head second = first —>rlink; // Get second node

* l / Make second node as the first node

head —>rlink = second ;

‘ T [FeL o0 [F=ET] ik seeonds

rT first printf (“ Item deleted = %d \n *, first—> info);

— second free (first); //Delete the first node

return head;

saividya.ac.in

Definition: A polynomial is sum of terms where each term has a form :

ax"

where
a: is a coefficient

X : is a variable

n: is exponent value
B The largest exponent value in the polynomial is called leading exponent. It is also called degree of a polynomial.
Ex1: A(x) = 6x* + 5x! +35 > Itis sum of three terms.

» 25 is the largest exponent in this polynomial. So, degree of polynomial is 25

Ex2: B(x) = 9x*- 5x3 + 6x2 - 20 P Itis sum of four terms.

> 4 is the largest exponent in this polynomial. So, degree of polynomial is 4

< Polynomial: A(x) = 9x*- 5x3 + 6x% - 20
The structure definition for a term can be written as: typedef struct

«» Each term has two fields: {
B Coefficient field: ¢ int c;

m power of x field: px int px;
} POLY ;

A polynomial has one or more terms or it is a collection of one or more terms. So, the data structure that we can
think of is an array. The above polynomial can be initialized using array of structures as shown below:

9x4 -5x3 6x2 -20
POLY a[]={{94}, {-53}, {6,2}, {-20,0}}

“* The pictorial representation of given polynomial can be written as shown below:

9x4 -5x3 6x2 -20
m ith term can be accessed by writing: afi]
a | 9 | 4 | | '5| 3 | | 6 | 2 | |20 | 0 | m coefficient of ith can be accessed by writing: a[i] .c
< » £ Pr St . m power of x of ith can be accessed by writing: a[i].px

[0] [1] [2] [3]

\{'oid print_polynomial (POLY af|, int n)
int i;
for (i=0; i< n; it++)

if (afil.c >0) +9x"4
- printf (¢ + %dx*%d “, a[i].c, a[i].px);
else

) printf (“ %dx~%d“, ali].c, a[i]-px);
y printf (“\n €);
9x4 -5x3 6x2 -20
POLY a[]={{9,4}, {-5,3}, {6,2}, {-20,0}}

“ The pictorial representation of given polynomial can be written as shown below:

9x* -5x3 6x2 -20
m ith term can be accessed by writing: afi]
a | 9 I 4 | | '5| 3 | I 6 I 2 | |20 | 0 | m coefficient of ith can be accessed by writing: a[i] .c
P S SERp S m power of x of ith can be accessed by writing: a[i].px
[0] [1] [2] [3]

void read polynomial (POLY a]], int n)

int i;
for (i=0; i < nj it++)
{
scanf (“%d %d “, &a[i].c, &ali].px);
) }

m= 6 n=3 Algorithm add_2_polynomials (p, m, q, n, r)
— i=j=k=0
P l , =0 q- while (i < m && j<n)
(07 11121 131 141 TST (0] [1] 2] ([ease: it @itpx— aiiex)
- sum = plil.c + q[jl.c
if (sum != 0)
r | 9x8] 3x¢ | 5x5 |14x4-5x3] 9x2| 6 r(k].c = sum, r[k].px = p[i].px
Kk++
[0][1] [2] [3][4] [5] [E] ['17(] [8] [9] [10] i, jir

Case 2: if (p[il.px > q[jl.px)
r[k].c = pli].c, r[k].px = p[i].px

i, ke
Case 3: r[k].c = qljl.c, r[k].px = q[j].px
i, k++
C r[k].c = plil.c, r[kl.px = p[i].px |While (i < m)
i, ke
r[kl.c = qljl-¢, r[kl.px = q[jl.px |While (j < n)
P, kot
return k

saividya.ac.in

Algorithm add_2_polynomials (p, m, q, n, r)

C

i=j=k=0
while (i< m && j< n)

Case 1: if (p[i].px = (q[j].px)

sum = pli].c + q[j].c

if (sum != 0)

r[k].c = sum, r[k].px = p[i].px
k++

i, jtt

Case 2: if (p[i].px > q[jl.px)

r[k].c = plil.c, r[k].px = p[i].px

C

i+, k++
Case 3: r[k].c = qljl.c, r[k].px = q[jl.px
it+, k++
r[kl.c = plil-c, r[kl.px = p[i}.px |While (i< m)
i++, kt+
r[kl.c = qljl.c, riklpx = gljlpx |While (j < n)
jH+, k++
return k

}

1{nta | 2 _polynomials (POLY P[], int m,

POLY[] b,intn,POLY c[])
int i=0, j=0, k=0, sum;
while(i < m && j< n) {
if (plil.px = qljlpx) {
sum = pli].c + qljl.c;
if(sum != 0) {
r(k].c = sum, r[k].px = pl[i].px;
} k++ ;
i+, i
} elseif (plil.px > q[jl.px) {
r[kl.c = pli].c , r[k].px = p[i].px;

i, kit
} else {

rikl.c = q[jl.c, r[k].px = q[jl.px;
} ith, kit

}
while (i, < m) {
r[k].c = p[i].c, r[k].px = p[i].px;
i, ktts
while (j < n) {
rikl.c = q[jl.c, r[k].px = qlj].px;
it ks
return k3

!nclu!e <st!!o.! > 1{nt a!!_! _po!ynomll!!! !!l!"l !” |

typedef struct

{ int c;
int px;

} POLY ;

void print_polynomial (POLY af], int n)
int i;

for (i=0; i< n; i++)

if (a[i].c >0)
printf (“ + %dx*%d “, ali].c, a[i].px);

printf (¢ %dx*%d“, a[i].c, a[i].px);
} printf (n%);
void read polynomial (POLY af], int n)
{ int i;

else

for (=05 i< n; k)
scanf (“%d %d “, &a[i].c, &ali].px);
}
// Insert the function to add two polynomials

nclude <stdio.h >

typedef struct

{ int c;
int px;

} POLY ;

void print polynomial (POLY af], int n)
int i;

for (1=0; i< n; it++)
if (ali].c >0)
printf (“ + %dx*%d“, ali].c, a[i].px);
else o rintf (¢ %dxA%d*, afil.c, alil.px);
y prntf (\n%);
void read _polynomial (POLY a]], int n)
int i;
for (i=0; i< n; i++)
scanf (“%d %d “, &ali].c, &ali].px);
}
/I Insert the function to add two polynomials

int add_2_polynomials (POLY p[], int m, POLY [] b, int n, POLY ¢[])

int add_2_polynomials (POLY p[], int m, POLY [] b, int n, POLY c[])

,int m,
POLY[] b,intn,POLY c[])
int i=0, j=0, k=0, sum;
while(i < m && j< n) {
if (plil.px = qljlpx) {
sum = pli].c + g[jl.c;
if (sum !'= 0) {
r(k].c = sum, r[k].px = p[i].px;

} k++
s o

} elseif (pli] .px > q[jl.px) {
r[k].c = pli].c , r[k].px = p[i].px;
i, ks
} else {
r(kl.c = qljl.c, r[k].px = q[j]l.px;
) } ith, kit
while (i < m) {
r[kl.c = plil.c, r[k].px = p[i].px;
i+, ks
while (j < n) {
rkl.c = q[jl.c, rk].px = q[j].px;
it kt+s

return k3

saividya.ac.in

void main

POLY a[20], b[20], c[40];
int m, n, X;

printf (“ Enter the no. of terms in 1%t polynomial : “);
scanf (“%d %, &m);

printf (“ Enter the terms of 15t polynomial : “);
read_polynomial (a, m);

printf (“ Enter the no. of terms in 2"4 polynomial :);
scanf (“%d %, &n);

printf (“ Enter the terms of 2" polynomial : ;
read_polynomial (b, n);

X = add_2_polynomials (2, m, b, n, ¢);

printf (“ Polynomial 1 : “);

print_polynomial (a, m);

printf (“ Polynomial 2 : ©);

print_polynomial (b, n);

printf (“ Polynomial 3 : «);

print_polynomial (¢, x);

Test case: 1 void main

a(x)= 9x® + 3x+ 5x5 + 6x* + 3x2 + 6 m= 6 ¢ POLY a[20], b[20], c[40];

b(x)= 8x* - 5x3 + 6x2 o= 4 int m, n, X;

c(x)= 9x8 + 3x6+ 555 + 14x* -5+ 9x2 +6 k = 7 %pﬂ(:«yﬂt{?ﬁ? - of terms fn T polynomial : ©);
Run 1 printf (“ Enter the terms of 15t polynomial : <);

Enter the no of terms in 1 polynomial : 6 read_polynomial (a, m);

Enter the terms of 1t polynomial: 9 8 3 6 55 6 4 3 2 6 0 printf (“ Enter the no. of terms in 2" polynomial :);

scanf (“%d “, &n);

printf (“ Enter the terms of 2" polynomial : ;
read_polynomial (b, n);

X = add_2_polynomials (2, m, b, n, c);

Enter the no of terms in 2" polynomial : 3

Enter the terms of 2" polynomial: § 4 -5 3 6 2

Polynomial 1: + 9x/8 +3x/6 + 5x*5 + 6x"4+3x"2 + 6x"0

Polynomial 2:+ 8x"4 - 5x"3 + 6x"2

Polynomial 3:+ 9x/A8 +3x/6 + 5xA5 + 14x/4 - 5x/3 + 9x"2 +6x0 Pﬂ'}ﬁ:(“ P°1yn_°mial 1:%);
print_polynomial (a, m);
printf (“ Polynomial 2 : ¢);
print_polynomial (b, n);
printf (“ Polynomial 3 : «);
print_polynomial (¢, x);

Test case: 2 void main

a(x)= 3zt + 3. 5p2 m=3 ' POLY a[20], b[20], c[40];

b(x)= 8 - 3x' + 5+ 3x +6 n=5 it m, n,x;

c(x)= 1x*+3x +6 x =3 &lﬁl&fi((‘:‘ﬁgt{r éhl: 1)1:) of terms in 1% polynomial : ¢);
Run 1 printf (“ Enter the terms of 15t polynomial :);

Enter the no of terms in 1% polynomial : 3 read_polynomial (a, m);

Enter the terms of 1% polynomial: 3 4 3 3 -5 2 printf (“ Enter the no. of terms in 2" polynomial : «);

scanf (“%d “, &n);

printf (“ Enter the terms of 279 polynomial :);
read_polynomial (b, n);

X = add_2_polynomials (2, m, b, n, ¢);

Enter the no of terms in 2" polynomial : 5

Enter the terms of 2" polynomial: 8 4 -3 3 52 31 6 0

Polynomial 1:+ 3x"4 +3x/3 - 5x/2

Polynomial 2:+ 8x”4 - 3x"3 + 5x/2 + 3x*1 + 6x"0

Polynomial 3:+ 11x4 +3x/1 +6x"0 printf (“ Polynomial 1 : “);
print_polynomial (a, m);
printf (“ Polynomial 2 : «);
print_polynomial (b, n);
printf (“ Polynomial 3 : “);
print_polynomial (¢, x);

<« Tree is a non-linear data structure where nodes are linked to each other in
parent-child relationship such that there is only one pathbetween any given two nodes.
= There is a special node called root node for which there is no parent.
= Remaining nodes are partitioned into subtrees
% Tree is also defined as acyclic directed graph

Ex : In the tree shown in figure on right hand side:
= The tree has 10 nodes: A, S, M, P, K, P, S, L, M, M
= Node A is root node and it is written at the top.

= Nodes S, M, P, K are children of node A and hence
there are four subtrees identified by S, M, P, K

Note: An m-ary tree is defined as a tree where each node has maximum of m children.
= If m =2, the tree is 2-ary tree or bin-ary tree.
= If m =3, the tree is 3-ary tree or tern-ary tree.
= If m =4, the tree is 4-ary tree or quad-ary tree.
Root node: A nodein a tree which has no parent is called root node.
** Root node is the topmost node in a tree.
+« Using root node, any node in the tree can be accessed.
% There is only one root node in a tree.
% In the given tree node containing item 50 is the root node.

Descendants: The nodes that are reachable from node x while moving downwards
are called descendants of node x.

<+ All the nodes below 30 i.e, 20, 25 and 20 are descendants of 30.

+ All the nodes below 45 i.e, 40, 25 and 75 are descendants of 45.

Left descendants: The nodes that are reachable from left side of node x while
moving downwards are called left descendants of node x.

¢ The nodes 30, 20, 25 and 20 are left descendants of 50.

< The nodes 40 and 75 are left descendants of 45.

Right descendants: The nodes that are reachable from right side of node x while
moving downwards are called right descendants of node x.

< The nodes 45, 40, 25 and 75 are right descendants of 50.
*» The nodes 25 and 20 are right descendants of 30.

Left subtree: All the nodes that are all left descendants of node x
form the left subtree of x.

¢ The nodes 30, 20, 25 and 20 together form the left subtree of node 50.
«» The nodes 40 and 75 together form the left subtree of node 45.
Right subtree: All the nodes that are all right descendants of node x
form the right subtree of x.
< The nodes 45, 40, 25 and 75 together form the right subtree of node 50.
¢ The nodes 25 and 20 together form the right subtree of node 30.
Child: A node which is the first descendant of a given node x is the child of node x.

< A node which is the first left descendant of a node is called left child.
< A node which is the first right descendant of a node is called right child.

Left subtree: All the nodes that are all left descendants of node x
form the left subtree of x.

¢ The nodes 30, 20, 25 and 20 together form the left subtree of node 50.
< The nodes 40 and 75 together form the left subtree of node 45.
Right subtree: All the nodes that are all right descendants of node x
form the right subtree of x.
¢ The nodes 45, 40, 25 and 75 together form the right subtree of node 50.
«» The nodes 25 and 20 together form the right subtree of node 30.

Child: A node which is the first descendant of a given node x is the child of node x.
< Anode which is the first left descendant of a node is called left child.
< Anode which is the first right descendant of a node is called right child.
Parent: A node having left subtree or right subtree or both is said to be a parent.
< The node 30 is the parent of nodes 20 and 25
< The node 45 is the parent of nodes 40 and 25
Siblings: The nodes having the same parent are called siblings.
+«* The nodes 20 and 25 are siblings.
++ The nodes 40 and 25 are siblings.

Ancestors: The nodes that are reachable from node x while moving upwards level
are called ancestors of node x.

< All the nodes above 20 i.e, 25, 30 and 50 are ancestors of 20.

< All the nodes above 75 i.e, 40, 45 and 50 are ancestors of 75. 1 ==== @
Leaf / external node: A node having empty left child and empty right child
is called a leaf node or a terminal node or an external node.

< The nodes 20, 20, 75 and 25 are all leaf nodes.
Internal nodes: The nodes except leaf nodes are called internal nodes.

<» The nodes 25, 40, 30, 45 and 50 are all internal nodes.

Level: The total number of edges from root to a node is called level of a node or depth of a node
< The total number of edges from 75 to root = 3. So, level of 75 is 3.

Height: The total number of nodes from a farthest leaf node to root is called height of a tree or depth of a tree.
<+ The total number of nodes from 75 to root = 4. So, height of tree is 4.
< The height of the tree = Number of levels = 4.

Definition: An m-ary tree where m = 2 is called 2-ary tree or bin-ary tree or binary tree.

+ In other words, a tree where each node in the tree has maximum of two childrenis called binary tree.

«» Each node in a binary tree can have either 0, 1 or 2 children but, a node can not have more than two children.
< An empty tree can also be considered as binary tree.

«» For example, the binary trees are shown below:

®
Empty tree
65 D 00 @ O & &

Types of binary trees: @ @ @ @ @ @

«¢ Full binary tree / Strictly binary tree
<+ Complete binary tree

+» Almost complete binary tree

«» Binary search tree

< AVL trees

< B-trees

«» RED-BLACK-trees

saividya.ac.in

Definition: A binary tree where each node has either 0 or 2 children is called full binary tree or strictly binary tree.
In other words, a binary tree in which all the nodes have two children except the leaf nodes is called full binary tree.
< An empty tree can also be considered as full binary tree.

< For example, all following binary trees are full binary trees:

root root

root

Empty tree ‘ i @ @
2& Jggﬁ

Definition: A binary tree where each node has either 0 or 2 children (full binary tree or strictly binary tree) and all the
leaf nodes are at the same level is called complete binary tree.

< An empty tree is considered as complete binary tree.
< At any level i in a complete binary tree the number of nodes = 2*
«» For example, all following binary trees are complete binary trees:

root root root root

Lol
mpty ee @ @
@@@@ (20) () (23)

@méb@@@@

Definition: A binary tree is an almost complete binary tree with the following properties:
¢ If i is the level of the tree, the number of nodes in it level must be 2!

< If number of nodes in it level < 2! then the number of nodes in (i- 1)t level must be 2"1and all the nodes if* level
must be filled from left to right only.

¢ A node in an almost complete binary tree cannot have right child without having left child. But, a node can have only
left child.

root
le(\)'el Num;):r (Z)f) nodes v
1 ——===A30) = {(a5)-----—--- 2=nt

A tree can be represented using three different ways:
< List representation

¢ Left-child Right sibling representation

e
o

Left child — Right child (Degree 2) representation

A tree can be represented using list as shown below:

«» The root node comes first.

«» Itis immediately followed by a list of subtrees of that node
«» Itis recursively repeated for each subtree.

Observe the following points:

< There are 3 children for node A in the tree. So, there are
3 nodes to the right of A in list representation.

< A’s first child is B, 27 child is C and 3" child is D and they
are shown using down links.

1%t child 24 child 3rd child

N L1 -~]]

1%t child 2" child : 15t child 1stchild 2" child 3" child

BIOI] CI=Em] BT[] 37 v]

15t child 2nd child 15t child

[E T—h[K [T~ v [= w]

saividya.ac.in

A left child right sibling representation of a tree can be obtained S
as shown below:

«» The root node comes first.

«» The left pointer of a node in the tree will be the
left child in this representation

«» The remaining children of a node in the tree (siblings)
can be inserted horizontally to the left child in
the representation.

Root

Observe the following points:

{ C) D «» A’s left child is B in the tree. So, A’s left child is B
in the representation.
@ a o < A’s remaining children such as C and D in the

tree are inserted horizontally to node B
in the representation.

saividya.ac.in

A tree can be represented as left child — right child or degree 2 representation Root
as shown below:

«» Obtain the left-child right sibling representation.
«» Rotate the horizontal lines clockwise by 45 degrees.

\
A tree can be represented as left child — right child or degree 2 representation
as shown below:

«» Obtain the left-child right sibling representation.
«» Rotate the horizontal lines clockwise by 45 degrees.

saividya.ac.in

Definition: An m-ary tree where m = 2 is called 2-ary tree or bin-ary tree or binary tree.
< In other words, a tree which has finite set of nodes that is either empty or consists of a root node and each node in the
tree has maximum of two children i.e., left subtree and right subtree is called binary tree.

¢ Root : Anode without a parent is called root node. It is the first node in the tree.

¢ Left subtree : A tree connected to left side of a node is called left subtree.

¢ Right subtree : A tree connected to right side of a node is called right subtree.
«¢ Each node in a binary tree can have either 0, 1 or 2 children but, a node can not have more than two children.

root

< An empty tree can also be considered asbinary tree.
Ll ® ©
" @® D GO0 @ @ (3
OO OOO

< For example, the binary trees are shown below:

Definition: A skewed binary tree is a binary tree where all the nodes are inserted towards one side only.
< If all the nodes are inserted towards left subtree, the binary tree is said to be skewed towards left.

«¢ If all the nodes are inserted towards right subtree, the binary tree is said to be skewed towards right.
«» For example,

root

(20
(30

root root

Left skewed binary tree Right skewed binary tree

Definition: An Abstract data type binary tree in short called ADT binary tree is defined as

< Set of items (objects) along with type of each item to be stored in the tree and

< Set of various operations to be performed on those items (objects).

< The operations specified may be insert, delete, display tree contents, compare two trees etc.

«» ADT Binary_Tree is
¢ Objects : Finite set of nodes either empty or consisting of a node, left subtree and right subtree
¢ Functions :

* item : element to be inserted.

* root : the root node of the binary tree.

NODE insert (item, root) :: Inserts an iteminto tree and returnsthe address of the root node

NODE delete_item (item, root) :: Deletes an item from the tree if foundotherwisedisplay ”Item not found”
void preorder (root) :: Display tree in preorder if tree is not empty

void inorder (root) :: Display tree in inorder if tree is not empty

void postorder (root) :: Display tree in postorder if tree is not empty

int count_nodes (root) :: Returns number of nodes in the tree

int height (root) :: Returns height of the tree

The height of the tree can be computed as shown below:
height level Number of nodes

IMaximum number of nodes at level i = 2i I

IMaximum number of nodes at height h = 21 I

The height of the tree can be computed as shown below:

height level Number of nodes

2N (===

3 2 --
hood
. a(r'-1)
Total number of nodes = 2+ 21 + 22 B 2 GP= r-1
n =1_ (2“1'1): 2it1_4
2-1

| Total number of nodes = 21*1.1 |

Taking log on both sides,

height level Number of nodes
P eccccmmmmmmm = 20 log (2") =log (n +1)

h log(22) = logz(n +1)

1 =———m e =5
? h = log (n)
3 2 —= —_— 4=22 So, height of the tree h = logz(n)
i 3i
Total number of nodes = 2° + 2' + 24 2} 4 2!
n = 12t)= 2itl_q
2-1

I Total number of nodes = 2i*1.1 I

Height/Depth of the tree = h= max.level + 1= i+ 1
n=2"%11=2"_4

2h=n+1

saividya.ac.in

Solution: The relation between number of leaf nodes and degree-2 nodes
can be obtained as shown below:
< Degree — 0 nodes :Nodes with zero children = n, =6
< Degree — 1 nodes :Nodes with one child = =2
< Degree —2 nodes : Nodes with two children = n, =
< Total number of nodes in the tree=n = ny+ N+ N, cceeeceeecceecceccccecces (1) 13
< Relationship between the number of nodes and number of branches

Total number of nodes = Total number of branches + 1

iy, D= B+ 1 cceeeescnencnnns (2)

¢ For a node with degree — 0, number of branches = 0 B=12+1

So, for n, number of nodes of degree — 0, number of branches = 0 -+ (3)

¢ For a node with degree — 1, number of branches = 1
So, for n; number of nodes of degree — 1, number of branches = n, -+ (4)

¢ For a node with degree — 2, number of branches = 2
So, for n, number of nodes of degree — 2, number of branches = 2 ny****(5)
Total number of nodes = 2 n,+ n; + 1
Using eq. (1), Mo+ fy+ 1= 2m,+ f, + 1
n,= m+ 1
(Number of leaf nodes) (Number of degree — 2 nodes)
saividya.ac.in

The different representations of binary trees are:
% Array representation
% Linked representation

A binary tree can be represented using array representation as shown below:

< Start numbering the nodes of the tree from top to bottom i.e., level by level starting from 0

< In a specific level, number the nodes from left to right in sequence (in ascending order)

<» The number of the left most node in a level must be one more than the highest number in previous level.

< These numbers represent the indices of an array and node values will be the corresponding array items as shown
in figure below:

How to compute maximum size of the array?
Observe the following points:

< Height of the tree =3 h

% Total number of nodes = 2"- 1=7

< Size of the array = 7/

A binary tree can be represented using array representation as shown below:
< Start numbering the nodes of the tree from top to bottom i.e., level by level starting from 0
In a specific level, number the nodes from left to right in sequence (in ascending order)
The number of the left most node in a level must be one more than the highest number in previous level.

These numbers represent the indices of an array and node values will be the corresponding array items as shown
in figure below:

e
o
0
o

K3
<

Level How to compute maximum size of the array?
e e e Observe the following points:
« Height of the tree =3 h
I em—emeees < Total number of nodes = Mo1=7
+* Size of the array =2 1=7

Maximum size of the array = 2 1=15

A50]30 40 Je

=

T Teobea]
i kil BESY INSY HEA BB B B ol
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

In the above tree black nodes are dummy nodes. They are not present.

8 9 10 11, ‘12 ‘13‘ 14‘
oflzo J2a]as] | |]
"/

Given the position of node : j
Position of left child = 2*i + 1
Position of right child = 2*i + 2
Position of parent =(i-1)/2

In a linked representation of a binary tree can be represented as shown below:
<+ Each node has three fields:

¢ info : contains the data to be manipulated

¢ llink : contains the address of left subtree

¢ rlink : contains the address of right subtree

«» Structure definition for a node can be written using two methods:

Method 1: Method 2:
struct node typedef struct node + NODE;
int info; struct node
struct node *1link; . .
b struct node *rlink; 1132)1)13 ﬁ;
typedef struct node + NODE; 2 NODE 1link;

< The pictorial representation of a node can be written as shown below:

Method 1: Method 2: Method 3: Method 4:
info info

root root

@ @ struct node
@ @ or @ @ b int info;

POOO OO » O

struct node *root;
OR
NODE root;

typedef struct node + NODE;

ol

The tree can be traversed using following traversal methods: Linked representation

?ﬁd preorder (NODE root)
if (root== NULL) return;
printf (“ %d “, root—> info);
preorder (root —> llink);

«» Preorder
6 Visit the node
e Recursively traverse left subtree in Preorder

6 Recursively traverse right subtree in Preorder } preorder (root—> rlink);
e void inorder (NODE root)
6 Recursively traverse left subtree in Inorder { if (root— NULL) return;
5
@ Visit the node inorder (root—> llink);

printf (“ %d“, root—> info);

6 Recursively traverse right subtree in Inorder 5
inorder (root—> rlink);

* Postorder goid postorder (NODE root)

R« ively t left subtree in Postord
c ecursively traverse left subtree in Postorder if (rovt==NULL) return;

@ Recursively traverse right subtree in Postorder postorder (root—> llink);
e Visit the node postorder (root—> rlink);

printf (“ %d“, root—> info);

saividya.ac.in

The tree can be traversed using following traversal methods: Array representation
void preorder (int root[], int i)
< Preorder

6 Visit the node
@ Recursively traverse left subtree in Preorder

if (root[i] == 0) return;
printf (“ %d “, root [i]);
preorder (root, 2*i + 1);
6 Recursively traverse right subtree in Preorder } preorder (root, 2*i+2);
< Inorder
) . void inorder (int root[], int i)
@ Recursively traverse left subtree in Inorder
o if (root[i] == 0) return;
6 Visit the node inorder (root, 2%i +1);
@ Recursively traverse right subtree in Inorder printf (“ %d“, root [i]);
inorder (root, 2*i + 2);

«» Postorder }
@ Recursively traverse left subtree in Postorder void postorder (int root[], int i)
© Recursively traverse right subtree in Postorder if (root[i]== 0) return;
@ .. postorder (root, 2*i + 1);
Yisit (B il postorder (root, 2*i + 2);
} printf (“ %d“, root [i]);

saividya.ac.in

The tree can be traversed using following traversal methods:
< Preorder
0 Visit the node
e Recursively traverse left subtree in Preorder
6 Recursively traverse right subtree in Preorder
«» Inorder
c Recursively traverse left subtree in Inorder [
© Visit the node i

.
5 1
west

6 Recursively traverse right subtree in Inorder -*

< Postorder
e Recursively traverse left subtree in Postorder
eRecursively traverse right subtree in Postorder 61, reorder :A B DEHCT FTI G
© Visit the node @Iordr :DBHEAFTI CG
ePostorder:D HE BI F GC A

The tree can be traversed using following traversal methods: Root

+ Preorder
@ Visit the node
9 Recursively traverse left subtree in Preorder

e Recursively traverse right subtree in Preorder
«» Inorder

c Recursively traverse left subtree in Inorder

6 Visit the node

e Recursively traverse right subtree in Inorder

« Postorder
0 Recursively traverse left subtree in Postorder

eRecursively traverse right subtree in Postorder GPreorder :ABDEHCTPFI G

© visit the node Iorder :D BHEATFTI CG

GPostorder:D HE BI F GC A

saividya.ac.in

The tree can be traversed using following traversal methods:
«» Preorder

e Visit the node

e Recursively traverse left subtree in Preorder

6 Recursively traverse right subtree in Preorder
< Inorder

o Recursively traverse left subtree in Inorder

6 Visit the node

6 Recursively traverse right subtree in Inorder

« Postorder

o Recursively traverse left subtree in Postorder

Infix N((65H(S2D)RE SHEGD S
6 Recursively traverse right subtree in Postorder

@pPreorder : + A~ + 6 + - 3 2 5 2 3
Gth the node elnorder :6 + 3 - 2 x 5 ~ 2 + 3
@Postorder t6 3 2 - 5 * 4+ 2 A~ 3 +

The tree can be traversed using following traversal methods:
< Preorder

@ Visit the node

6 Recursively traverse left subtree in Preorder

@ Recursively traverse right subtree in Preorder

Root

«» Inorder

0 Recursively traverse left subtree in Inorder
6 Visit the node

6 Recursively traverse right subtree in Inorder

% Postorder

o Recursively traverse left subtree in Postorder

eRecursively traverse right subtree in Postorder Preorder : 100 50 30 60 55 200 150 160 300
© Visit the node Tree sort [) Inorder : 30 50 55 60 100 150 160 200 300 |

Postorder : 30 55 60 50 160°150° 300 200 100

saividya.ac.in

void inorder (NODE root) 4000 <
{ NODE cur, stack[20]; 3500 %
int top = -1; 8000 ><

if (root== NULL) 15002

2500 X
printf (“List is empty\n“);
return; 3000 ><
=% 9000 X
cur = root; g 2000 %
for (33) 1000 >X
while (cur != NULL) // Reach leftmost node
s [++top | = cur; // Push the node
cur = cur —>llink; /] Traverse left subtree
if (top = -1) return; // All nodes have been visited
cur = s[top--]; // Remove the node from stack
printf (“ %d “, cur—>info); // Visit the node @ Inorder :30 50 55 60 100 150 160 200 300
cur = cur —>rlink; // Traverse right subtree v v v v v v v v V¥

}

Definition: The nodes in a tree are numbered starting with root
on level 0, continuing with the nodes on level 1, level 2 and so on.
Nodes on any level are numbered from left to right. Visiting the
nodes using the ordering suggested by node numbering is called
level order traversal of a tree.

void level order (NODE root) q
{ L2AN S VAN A LA v AS aYA
NODE cur, q[20]; 01 [11 2] 3] [4] [5] 6] [7] I8 [9]
int front, rear; cur 2000
if (root == NULL)

printf (“Tree is empty\n”) ; 4000 cur
} return;

front = 0, rear = -1;
q [++rear] = root;

whjle (front <= rear)

cur = queue [front++]; // Delete from queue

printf (“ %d“, cur—> info); // Visit the node LESEtneks é T ‘C/ L E 5 (j v
v v v v

if (cur —>1llink != NULL) // Tnsert left child into q

q [++rear |= cur—>llink;

if (cur —>rlink != NULL) // Insert right child into q
q[+trear |= cur—>rlink;

} printf(“\n €);

saividya.ac.in

Observe the following points:
¢ Total number of nodes =

7 =n
¢ Number of actual addresses = 6 =n-1
¢ Number of NULL links =8 =n+1

¢ Total number of links =14 =2n
¢ NULL links are more than the actual addresses
¢ There are n + 1 NULL links out of 2n total links

Disadvantages of binary trees B
¢ Wasting memory simply by storing \0 characters

¢ Traversing a tree uses implicit stack in case of o] D | | E [\ o F o
recursive traversal and uses explicit stack in case of

iterative traversal. So, most of the time is spend in
push and pop operations.

¢ Traversing a binary tree is time consuming.

Note: All the above disadvantages can be overcome using threaded binary trees.

saividya.ac.in

Definition: In a threaded binary tree, all the NULL links are replaced by actual addresses called threads.
<+ If left link of a node is NULL, replace it with its inorder predecessor
if exists. Otherwise, replace it with address of header node.

If right link of a node is NULL, replace it with its inorder successor
if exists. Otherwise, replace it with address of header node.

A binary tree where all the NULL links are replaced by

actual addresses (either inorder predecessor or inorder

successor or header node) is called a threaded binary tree.

The structure can be defined as shown below:

K3
£X3

0
o

K3
o

struct node [No Title] |

int info; :

struct node *llink; I\GI D I\0
3 struct node *rlink;

typedef struct node * NODE;

The header node can be declared as shown below:
struct node * head ;
OR
NODE head;

e
Qe

Inorder traversal: D B A E G C F

To represent a threaded binary tree in memory
< We must be able to distinguish between normal link

PeLTT
(e tay

A head £,

and a thread.
< Tt is done by adding two additional fields to the node
structure : 3
Ithread :1 - Hinkisathread (denoted by dotted arrow) 7

0 — llink is normal link (denoted by black arrow)

rthread : 1 - rlinkis a thread (denoted by dotted arrow)
0 — rlink is normal link (denoted by black arrow)

struct node
int info;
short int Ithread;
struct node *llink;
short int rthread;
3 struct node *rlink;

typedef struct node * NODE ;
Fig. Memory representation of a threaded binary tree

«» An empty tree can be represented as shown below:
head Inorder traversal: D B A E G C F

L

saividya.ac.in

The function to find inorder successor can be written as shown below:

NODE inorder_successor (NODE x) A head L
NODE cur; 7 *

cur = x—>rlink; // Get the address of right node
if (x = rthread = 1) return cur;

// Keep moving left till you get thread in left link
while (cur —> Ithread == 0) cur = cur —> llink;

return cur;

}

The function to traverse the tree in inorder is shown below:
void inorder (NODE head)

NODE cur;
cur = head;
for (33)
cur = inorder_successor (cur); Fig. Memory representation of a threaded binary tree
C lf(.cur e ead) retun?; Inorder traversal: D B A E G C F
printf (“%d ”, cur—>info); VA A A A

}

}

