MODULE -4
—_— WhatlsDictionany?

Definition: A dictionary is a collection of pairs (key, item) where

e

< The first component of the pairis the key

« The second component of the pair is the item which represent associated information with respect to key.

o

% No two pairs have the same key in the dictionary i.e., key is alwaysunique.

<

* For example,

Key Item

9845070827 Padma Reddy No. 256, 2"d main, Bengaluru.
9900170827 Padma Reddy No. 256, 2" main, Bengaluru.
888888888 Mithil No. 256, 2" main, Bengaluru.
999999999 Monalika No. 256, 2" main, Bengaluru.

(Mobile Number) (Name with postal address)

In the above dictionary, telephone number is considered as the key and name of the person along with postal address
is considered as the item associated with key.

K3
£>3

Definition: An Abstract data type Dictionary in short called ADT Dictionary is defined as
% Collection of n pairs (key, item) where each pair has a key along with associated item and
<+ Set of various operations to be performed on those items (objects).
< The operations specified may be insert, delete, display dictionary contents, search etc.
< ADT Dictionary is
4 Objects : Collection of n pairs where each pair has a key and an associated item such as
* key :element to be searched.
¢ item : information such as name, address etc.
*d :Dictionary
*n :Number of pairs (key, item)

¢ Functions :
void insert (item, key, d) :: Insert the item with key into dictionary d
void is_empty (d, n) :: if n == 0 return TRUE else return FALSE

void delete_item (key, d) :: If key is present in dictionary d, delete the entry
otherwise display ”key not found”

void search (key, d) :: if key is present in dictionary return the corresponding item else return 0

Note: ADT dictionary can be efficiently implemented using binary search tree.

saividva.ac.in

Definition: A binary search tree is a binary tree which is either empty or non-empty. If it is not empty, it must satisfy
the following properties:
< Each node has exactly one key and all keys must be different.

e

< For each node say x in the tree, all the the keys in the left subtree must beless than key (x)
o%%

< For each node say x in the tree, all the the keys in the right subtree must be greater than key (x)
< For example, all the binary trees shown below are binary search trees.

Root Root
Empty tree
Fig. (a) Fig. (b) Fig. (c) Fig. (d)

saividya.ac.in
|

Problem : Create a binary search tree for the following items:

100 50 200 30 60 S5 150 160 300 S8
vVvy Y vvv v

Initial ~ Step 1: item =100 Step 2: item =50 Step 3: item =200 Step 4: item =30
Root Root Root Root
Step 5: item =60 Step 6: item =55 @ Step 7: it]im T 150
Root Root 00

saividya.ac.in

Problem : Create a binary search tree for the following items:

100 50 200 30 60 55 150 160 300 58
vvvyvy v v

Step 8: item =160
Root

Step 9: item =300
Root

Case 1: Tree is empty
Root

item =55

temp

Case 2: Tree is existing

}

Step 10: item =58
Root

NODE insert (int item, NODE root)
t NODE temp, prey, cur ;

// create a node

temp = getnode ();

temp —> info = item;

temp —> llink = temp —> rlink= NULL;

// Insert a node for the first time
if (root == NULL) return temp;

// Find the appropriate place to insert
cur = root;
while (cur != NULL)

prev = cur;

if (item < cur —> info)

cur = cur —>llink ;

' FBE clir /= cur—> rhink:
// Insert the item at appropriate place
if (item < prev —> info)

prev —>llink = temp ;

o prev —> rlink = temp ;

return root;

saividya.ac.in

NODE insert (int item, NODE root)
Case 1: Tree is empty {

Root temp NODE temp, prey, cur;
00

0 temp = getnode ();
item =55 temp —> info = item;

temp —> llink = temp —> rlink= NULL;
HAsR 2N Ircede cxisting if (root == NULL) return temp;

cur = root;
while (cur != NULL)
prev = cur;
if (item == cur — info) {
printf (“Duplicate item ”);
} free (temp); return root;
if (item < cur — info)
cur = cur —>llink ;

) et cur = cur —>rlink;

if (item < prev —> info)
rev —>llink = temp ;
temp dse T S g
prev —> rlink = temp ;
item =55 return root;

saividya.ac.in 4

int search (int item, NODE root)
{ NODE cur;

if (root == NULL) return 0;

cur = root;

while (cur != NULL)
if (item == cur —> info) return 1;
if (item < cur —> info)

cur = cur —>llink ;
else

cur = cur —>rlink;

}

return 0;

#include <stdio.h> void main ()
#include <stdlib.h> U int choice, item;
NODE root=NULL;

struct node

{ for (35)

int info; { printf (“ 1:Insert 2:Preorder 3:Inorder: “);

struct node * llink; printf (“4:Postorder S5:Search 6:Exit:“);

struct node * rlink; scanf (“%d “, &choice);
3 switch (choice)
typedef struct node * NODE; casel : printf (“ Enter the item : “); scanf (“%d “, &item);

root = insert (item, root) ;
NODE getnode ()3 break;
case2 : if (root = NULL) {

NODE insert (int item , NODE root);) printf (“Tree is empty\n”) ; break;

int search (int item , NODE root);

void preorder (NODE root); printf (“Preorder :”); preorder (root); break;

void inorder (NODE root); case5 : printf (“ Enter theitem : “); scanf(“%d «, &item);
void postorder (NODE first); flag = search (item, root) ;
if (flag == 1

)
1 printf (“ Item found \n “);
else
printf (“ Item not found \n “);

break;
} default: exit(0);

saividya.ac.in

Case 1: Tree is empty

NODE search (intitem, NODE root) item = 100
if (root ==NULL) return NULL;
if (item == root—>info) return root; Case 2: Tree is existing
if (item < root—>info) Root

return search (item, root—>llink) ;

return search (item, root—>rlink);

int count = 0;

void count node (NODE root)

{ if (root ==NULL) return;
count_node (root—>llink) ;

count++;
count_node (root—>rlink) ;

}

int count = 0;

void count_leaf (NODE root)
if (root ==NULL) return;

count_leaf (root—>llink);

if (root—>llink == NULL && root—>rlink== NULL) count++;
count_leaf (root—>rlink);

int max (int a, int b)

return a > b ? a:b

int height (NODE root)

if (root ==NULL) return 0;
} return 1+ max (height (root—> llink) , height (root—> rlink)) ;

Recursive definition to find height of the tree

0 if root == \()
H (root)
(008 max (H (root—Ilink) ; H'(root—> rlink)} otherwise

1 + MAX (Height= 2, Height= 3)

saividya.ac.in

Infix: (6+(3-2)*5)~2+3 postfix:| 6 |3 | 2] -5 [*[+]2[~|3]+]w] | |
VYV VIV V VIV

NODE create expression_tree (char postfix [])

{
NODE temp, stack [20 |;

int i, top=-1;
for (i=0; postfix [i] != “\0’; i++)

temp = getnode ();
temp —> info = postfix [i];
temp —> llink = temp —> rlink= NULL;

if (isalnum (temp —> info))

stack [++top | = temp;
else

{ temp —> rlink = stack [top--|;

temp —> llink = stack [top--|;
} stack [++top | = temp;
}

) return s [top--];

Definition: A selection tree or tournament tree is a tree data structure
which is used to select a winner in a knockout tournament.

« The leaves of the tree represent players entering the tournament
+« Each internal node represent a winner or a loser in the match.

< If the internal nodes in a tree represent winners the tree is Players
called winner tree.

+¢ If the internal nodes in a tree represent losers the tree is
called loser tree.

< The two types of selection trees are:
¢ Winner tree
¢ Loser tree

Players

Note: Using selection treeswe can sort the elements in ascending/descending order

Definition: A selection tree where each internal node represents the winner
is called winner tree. A winner tree is a complete binary tree with n-leaf
nodes and n - 1 internal nodes where
« Each internal node records the winner of the match.
< A winner tree can be either a min winner tree or
max winner tree.
+ To determine the winner of the match, we assume that
each player is associated with a value.
¢ In a min winner tree, each internal node represents Pl
the smaller of its two children i.e., the player with avers
the smaller value wins.
¢ In a max winner tree, each node represents
the larger of its two children i.e., the player with
the larger value wins.

Min winner tree
Number of leaves =8=n
Number of internal nodes = 7 =

I
=
1
—

< The root node represents the smallest node in min winner tree.
< The root node represents the largest node in max winner tree.

Note: If two value are same, the left child will be the winner.

Max winner tree

saividya.ac.in

¢ A set of records arranged in ascending order is input to get a winner tree.

These sets of records arranged in ascending are called runs.

« Initially, take the first item from each run and treat them as
leaves of a tree.

< Between every two players, select the smaller item and elevate
to parent position.

< Each non-leaf node in the tree represent the winner in the
tournament and the root node contains the smallest item
indicating winner of the tournament.

«* A winner tree may be represented using sequential representation
(array representation) for binary trees

+ The number above the node indicates the position of that node
in array representation.

¢ The root node contains smallest item. Remove the root node
and output.

< After removing the smallest node, obtain the next node from
corresponding run.

« A set of records arranged in ascending order is input to get a winner tree.

These sets of records arranged in ascending are called runs.

< Initially, take the first item from each run and treat them as
leaves of a tree.

+ Between every two players, select the smaller item and elevate
to parent position.

< Each non-leaf node in the tree represent the winner in the
tournament and the root node contains the smallest item
indicating winner of the tournament.

< A winner tree may be represented using sequential representation
(array representation) for binary trees

+ The number above the node indicates the position of that node
in array representation.

< The root node contains smallest item. Remove the root node
and output.

¢ After removing the smallest node, obtain the next node from
corresponding run.

<+ Now, reconstruct the winner tree by playing the tournament
along the path from root node

[15] [20][20] [as] [as] [ar]]os] fus]
16| [38][30] [25] [s0] [as|]o0] [0
NN EE .

runl run2 run3 run4 run5 run6é run7 run8

Output: 6

[15] [20][20] [2s] [1s] [uo]fos] [us]
[16] [38][30] [28] [s0] [16][o9] [20]
N | A I O A

runl run2 run3 run4 run5 runé run7 run8

Output: 6 8

saividya.ac.in

¢ A set of records arranged in ascending order is input to get a winner tree.

These sets of records arranged in ascending are called runs.

<« Initially, take the first item from each run and treat them as
leaves of a tree.

« Between every two players, select the smaller item and elevate
to parent position.

< Each non-leaf node in the tree represent the winner in the
tournament and the root node contains the smallest item
indicating winner of the tournament.

< A winner tree may be represented using sequential representation
(array representation) for binary trees

+« The number above the node indicates the position of that node
in array representation.

< The root node contains smallest item. Remove the root node
and output.

« After removing the smallest node, obtain the next node from
corresponding run.

« Now, reconstruct the winner tree by playing the tournament
along the path from root node

« A set of records arranged in ascending order is input to get a winner tree.

These sets of records arranged in ascending are called runs.

« Initially, take the first item from each run and treat them as
leaves of a tree.

+« Between every two players, select the smaller item and elevate
to parent position.

< Each non-leaf node in the tree represent the winner in the
tournament and the root node contains the smallest item
indicating winner of the tournament.

< A winner tree may be represented using sequential representation
(array representation) for binary trees

<+ The number above the node indicates the position of that node
in array representation.

«» The root node contains smallest item. Remove the root node
and output.

< After removing the smallest node, obtain the next node from
corresponding run.

<+ Now, reconstruct the winner tree by playing the tournament
along the path from root node

[15] [20][20] [2s] [50] [u]{os] [re]
[16] [38][30] [28] [[rs][o9] [2o]
] B]

runl run2 run3 run4 run5 runé run7 run8

Output: 6 8 9

runl run2 run3 run4 run5 run6 run7 run8

Output: 6 8 9 9

saividya.ac.in

< A set of records arranged in ascending order is input to get a winner tree.

These sets of records arranged in ascending are called runs.

< Initially, take the first item from each run and treat them as
leaves of a tree.

< Between every two players, select the smaller item and elevate
to parent position.

< Each non-leaf node in the tree represent the winner in the

tournament and the root node contains the smallest item
indicating winner of the tournament.

< A winner tree may be represented using sequential representation
(array representation) for binary trees

¢ The number above the node indicates the position of that node
in array representation.

< The root node contains smallest item. Remove the root node
and output.

+ After removing the smallest node, obtain the next node from
corresponding run.

< Now, reconstruct the winner tree by playing the tournament
along the path from root node

[15] [38][20] [25] [50] [ae]fos] fus.
o] [z [28]] [[e2] [z
]]]

runl run2 run3 run4 run5 runé run7 run8

|Output: 6 8 9 9 10 andsoon. |
tournament tree (Winner tree) sort

saividya.ac.in

Definition: A selection tree where each internal node represents the loser
is called loser tree. A loser tree is a complete binary tree with n-leaf nodes

and n - 1 internal nodes where

+« Each internal node records the loser of the match.

++ To determine the loser of the match, we assume that
each player is associated with a value.

«» In aloser tree, each internal node represents the loser.
i.e., we select a player who loses the match.

<« The final player who has not lost any match is the winner

of the tournament and it is written right above the root node. Players (10) (9) (20) (6) (8) ()

Loser tree ¥
Number of leaves =8=n
Number of internal nodes = 7

Il
=

1
—

< A set of records arranged in ascending order is input to get a loser tree. 0 O ‘Winner

These sets of records arranged in ascending are called runs.
< Initially, take the first item from each run and treat them as
leaves of a tree.

< Among the players, select a player who lost the match
and elevate to parent position.

« Each non-leaf node in the tree represent the loser in the
tournament and a person who has not lost is the winner
of the tournament.

+* The winner is indicated by parent of root node and contains
the smallest item.

< The loser tree may be represented using sequential representation
(array representation) for binary trees

+« The number by the side of the node indicates the position of
that node in array representation.

< The parent of root contains smallest item. Remove the root node
and output.

+« After removing the smallest node, obtain the next node from
corresponding run.

runl run2 run3 run4 run5 run6é run7 run8

Output: 6

% A set of records arranged in ascending order is input to get a loser tree.
These sets of records arranged in ascending are called runs.
«¢ Initially, take the first item from each run and treat them as
leaves of a tree.
< Among the players, select a player who lost the match
and elevate to parent position.
< Each non-leaf node in the tree represent the loser in the

tournament and a person who has not lost is the winner
of the tournament.

«* The winner is indicated by parent of root node and contains
the smallest item.

< The loser tree may be represented using sequential representation
(array representation) for binary trees

< The number by the side of the node indicates the position of
that node in array representation.

< The parent of root contains smallest item. Remove the root node runl run2 run3 run4 runS run6é run7 run8
and output. Output: 6 8

< After removing the smallest node, obtain the next node from
corresponding run.

+ A set of records arranged in ascending order is input to get a loser tree. 0 O Winner

These sets of records arranged in ascending are called runs.
< Initially, take the first item from each run and treat them as
leaves of a tree.
< Among the players, select a player who lost the match
and elevate to parent position.

<+ Each non-leaf node in the tree represent the loser in the
tournament and a person who has not lost is the winner
of the tournament.

+« The winner is indicated by parent of root node and contains
the smallest item.

<+ The loser tree may be represented using sequential representation
(array representation) for binary trees

< The number by the side of the node indicates the position of
that node in array representation.

% The parent of root contains smallest item. Remove the root node runl run2 run3 run4 runS run6 run7 run8
and output. Output: 6 8 9

< After removing the smallest node, obtain the next node from
corresponding run.

< A set of records arranged in ascending order is input to get a loser tree.
These sets of records arranged in ascending are called runs.
< Initially, take the first item from each run and treat them as
leaves of a tree.
< Among the players, select a player who lost the match
and elevate to parent position.

< Each non-leaf node in the tree represent the loser in the
tournament and a person who has not lost is the winner
of the tournament.

+ The winner is indicated by parent of root node and contains
the smallest item.

< The loser tree may be represented using sequential representation
(array representation) for binary trees

¢ The number by the side of the node indicates the position of
that node in array representation.

«» The parent of root contains smallest item. Remove the root node runl run2 run3 run4 run5 run6 run7 run8
and output. Output: 6 8 9 9
¢ After removing the smallest node, obtain the next node from
corresponding run.
|
< A set of records arranged in ascending order is input to get a loser tree. 0 @ Winner

These sets of records arranged in ascending are called runs.
< Initially, take the first item from each run and treat them as
leaves of a tree.
«» Among the players, select a player who lost the match
and elevate to parent position.

< Each non-leaf node in the tree represent the loser in the
tournament and a person who has not lost is the winner
of the tournament.

¢ The winner is indicated by parent of root node and contains
the smallest item.

< The loser tree may be represented using sequential representation
(array representation) for binary trees

+«+ The number by the side of the node indicates the position of
that node in array representation.

< The parent of root contains smallest item. Remove the root node runl run2 run3 run4 run5 run6 run7 run8

SEUEE Output: 6 8 9 9 10
< After removing the smallest node, obtain the next node from
corresponding run.

<% A set of records arranged in ascending order is input to get a loser tree.
These sets of records arranged in ascending are called runs.
< Initially, take the first item from each run and treat them as
leaves of a tree.
< Among the players, select a player who lost the match
and elevate to parent position.

< Each non-leaf node in the tree represent the loser in the
tournament and a person who has not lost is the winner
of the tournament.

+« The winner is indicated by parent of root node and contains
the smallest item.

< The loser tree may be represented using sequential representation
(array representation) for binary trees

« The number by the side of the node indicates the position of
that node in array representation.

+«» The parent of root contains smallest item. Remove the root node runl run2 run3 run4 runS run6 run7 run8

AL ONtDRE IOutput: 68 9 9 10 and so on. I
< After removing the smallest node, obtain the next node from tournament tree (Loser tree) sort
corresponding run.

saividya.ac.in

<» Tree is a non-linear data structure where nodes are linked to each other in
parent-child relationship such that there is only one pathbetween any given two nodes.
= There is a special node called root node for which there is no parent.
= Remaining nodes are partitioned into subtrees
< Tree is also defined as acyclic directed graph

Ex : In the tree shown in figure on right hand side:
= The tree has 10 nodes: A, S, M, P, K, P, S, L, M\, M
= Node A is root node and it is written at the top.

= Nodes S, M, P, K are children of node A and hence
there are four subtrees identified by S, M, P, K

Note: An m-ary tree is defined as a tree where each node has maximum of m children.
= If m =2, the tree is 2-ary tree or bin-ary tree.
= If m =3, the tree is 3-ary tree or tern-ary tree.
= If m =4, the tree is 4-ary tree or quad-ary tree.

Root node: A node in a tree which has no parent is called root node.
< Root node is the topmost node in a tree.
+ Using root node, any node in the tree can be accessed.
¢ There is only one root node in a tree.
+ In the given tree node containing item 50 is the root node.

Descendants: The nodes that are reachable from node x while moving downwards
are called descendants of node x.

+* All the nodes below 30 i.e, 20, 25 and 20 are descendants of 30.

< All the nodes below 45 i.e, 40, 25 and 75 are descendants of 45,

Left descendants: The nodes that are reachable from left side of node x while
moving downwards are called left descendants of node x.

< The nodes 30, 20, 25 and 20 are left descendants of 50.

«» The nodes 40 and 75 are left descendants of 45.

Right descendants: The nodes that are reachable from right side of node x while
moving downwards are called right descendants of node x.

«» The nodes 45, 40, 25 and 75 are right descendants of 50.
«» The nodes 25 and 20 are right descendants of 30.

Left subtree: All the nodes that are all left descendants of node x
form the left subtree of x.

«» The nodes 30, 20, 25 and 20 together form the left subtree of node 50.
<» The nodes 40 and 75 together form the left subtree of node 45.
Right subtree: All the nodes that are all right descendants of node x
form the right subtree of x.
< The nodes 45, 40, 25 and 75 together form the right subtree of node 50.
<» The nodes 25 and 20 together form the right subtree of node 30.
Child: A node which is the first descendant of a given node x is the child of node x.

«» A node which is the first left descendant of a nodeis called left child.
< Anode which is the first right descendant of a node is called right child.

Left subtree: All the nodes that are all left descendants of node x
form the left subtree of x.

<» The nodes 30, 20, 25 and 20 together form the left subtree of node 50.
< The nodes 40 and 75 together form the left subtree of node 45.
Right subtree: All the nodes that are all right descendants of node x
form the right subtree of x.
< The nodes 45, 40, 25 and 75 together form the right subtree of node 50.
«» The nodes 25 and 20 together form the right subtree of node 30.

Child: A node which is the first descendant of a given node x is the child of node x.
¢ A node which is the first left descendant of a node is called left child.
< Anode which is the first right descendant of a node is called right child.
Parent: A node having left subtree or right subtree or both is said to be a parent.
< The node 30 is the parent of nodes 20 and 25
< The node 45 is the parent of nodes 40 and 25
Siblings: The nodes having the same parent are called siblings.
+ The nodes 20 and 25 are siblings.
< The nodes 40 and 25 are siblings.

Ancestors: The nodes that are reachable from node x while moving upwards level
are called ancestors of node x.

< All the nodes above 20 i.e, 25, 30 and 50 are ancestors of 20.

«» All the nodes above 75 i.e, 40, 45 and 50 are ancestors of 75.
Leaf / external node: A node having empty left child and empty right child
is called a leaf node or a terminal node or an external node.

< The nodes 20, 20, 75 and 25 are all leaf nodes.
Internal nodes: The nodes except leaf nodes are called internal nodes.

<+ The nodes 25, 40, 30, 45 and 50 are all internal nodes.

Level: The total number of edges from root to a node is called level of a node or depth of a node
< The total number of edges from 75 to root = 3. So, level of 75 is 3.

Height: The total number of nodes from a farthest leaf node to root is called height of a tree or depth of a tree.
< The total number of nodes from 75 to root = 4. So, height of tree is 4.
¢ The height of the tree = Number of levels = 4.

Definition: An m-ary tree where m = 2 is called 2-ary tree or bin-ary tree or binary tree.

< In other words, a tree where each node in the tree has maximum of two children s called binary tree.

+ Each node in a binary tree can have either 0, 1 or 2 children but, a node can not have more than two children.
+« An empty tree can also be considered as binary tree.

+<» For example, the binary trees are shown below:

root root root root root

E tr @ i
P o D GO @ ® @ &
Types of binary trees: @ @ @ @ @ @

+¢ Full binary tree / Strictly binary tree
< Complete binary tree

< Almost complete binary tree

< Binary search tree

< AVL trees

< B-trees
«» RED-BLACK-trees

Definition: A binary tree where each node has either 0 or 2 children is called full binary tree or strictly binary tree.
In other words, a binary tree in which all the nodes have two children except the leaf nodes is called full binary tree.

< An empty tree can also be considered as full binary tree.
«» For example, all following binary trees are full binary trees:

root root root

root
Emptytree
‘ b () () @ (22)
00 @@ (59(0

Definition: A binary tree where each node has either 0 or 2 children (full binary tree or strictly binary tree) and all the
leaf nodes are at the same level is called complete binary tree.

< An empty tree is considered as complete binary tree.
<+ At any level i in a complete binary tree the number of nodes = 2*
< For example, all following binary trees are complete binary trees:

root root root

Etr
R OO
OO®® @

Definition: A binary tree is an almost complete binary tree with the following properties:
«» If i is the level of the tree, the number of nodes in i? level must be 2!

«» If number of nodes in it level < 2! then the number of nodes in ({i—1)% level must be 2'"!and all the nodes it? level
must be filled from left to right only.

< A node in an almost complete binary tree cannot have right child without having left child. But, a node can have only
left child.

Number of nodes
root

______________ 1=2°
(60)
1

A tree can be represented using three different ways:
< List representation

< Left-child Right sibling representation

< Left child — Right child (Degree 2) representation

A tree can be represented using list as shown below:

« The root node comes first.

« Itis immediately followed by a list of subtrees of that node
< It is recursively repeated for each subtree.

Observe the following points:

< There are 3 children for node A in the tree. So, there are
3 nodes to the right of A in list representation.

¢ A’s first child is B, 2" child is C and 3" child is D and they
are shown using down links.

1% child 24 child 3rd child
NE TN L =————[
v 15t child 2nd child 1st child i 15t child 2md child 3% child
Bl [F-{F]o] [c[F[cT0] T T[T F[7 0]
1st child 2nd child 15t child

\ 4 v
[e [[x[J-{t o] (e [=[w

saividya.ac.in

A left child right sibling representation of a tree can be obtained
as shown below:

«» The root node comes first.

«» The left pointer of a node in the tree will be the

left child in this representation

The remaining children of a node in the tree (siblings)
can be inserted horizontally to the left child in

the representation.

2
o<

Root

Observe the following points:
«» A’s left child is B in the tree. So, A’s left child is B

(c) D
in the representation.
G o o < A’s remaining children such as C and D in the

tree are inserted horizontally to node B
in the representation.

saividya.ac.in

A tree can be represented as left child — right child or degree 2 representation Root
as shown below:

< Obtain the left-child right sibling representation.
% Rotate the horizontal lines clockwise by 45 degrees.

saividya.ac.in

A tree can be represented as left child — right child or degree 2 representation
as shown below:

«» Obtain the left-child right sibling representation.

< Rotate the horizontal lines clockwise by 45 degrees.

saividya.ac.in

Definition: An m-ary tree where m = 2 is called 2-ary tree or bin-ary tree or binary tree.
< In other words, a tree which has finite set of nodes that is either empty or consists of a root node and each node in the
tree has maximum of two children i.e., left subtree and right subtree is called binary tree.
¢ Root : A node without a parent is called root node. It is the first node in the tree.
¢ Left subtree : A tree connected to left side of a node is called left subtree.
¢ Right subtree : A tree connected to right side of a node is called right subtree.
+« Each node in a binary tree can have either 0, 1 or 2 children but, a node can not have more than two children.
<» An empty tree can also be considered asbinary tree.
< For example, the binary trees are shown below:

root

@

’ & D S0 @ ® & &
OO OO

. Wnatisskewed binarytreez

Definition: A skewed binary tree is a binary tree where all the nodes are inserted towards one side only.
< If all the nodes are inserted towards left subtree, the binary tree is said to be skewed towards left.

<» If all the nodes are inserted towards right subtree, the binary tree is said to be skewed towards right.
<» For example,

root root

Left skewed binary tree Right skewed binary tree

Definition: An Abstract data type binary tree in short called ADT binary tree is defined as
< Set of items (objects) along with type of each item to be stored in the tree and
< Set of various operations to be performed on those items (objects).
< The operations specified may be insert, delete, display tree contents, compare two trees etc.
< ADT Binary_Tree is
¢ Objects : Finite set of nodes either empty or consisting of a node, left subtree and right subtree
¢ Functions :
* item : element to be inserted.
* root : the root node of the binary tree.

NODE insert (item, root) :: Inserts an item into tree and returnsthe address of the root node

NODE delete_item (item, root) :: Deletes an item from the tree if foundotherwisedisplay ”Item not found”
void preorder (root) :: Display tree in preorder if tree is not empty

void inorder (root) :: Display tree in inorder if tree is not empty

void postorder (root) :: Display tree in postorder if tree is not empty

int count_nodes (root) :: Returns number of nodes in the tree

int height (root) :: Returns height of the tree

The height of the tree can be computed as shown below:

height level Number of nodes
1) =ommommmm=os
2 1 =====
3 2 -
o

| Maximum number of nodes at level i = 2i I

IMaximum number of nodes at height h = 2i I

The height of the tree can be computed as shown below:

height level Number of nodes

1 0 =mmmmmmmmmee

2 1 —m—--

3 2 -=

i

. a(r'-1)
Total number of nodes = 2° + 2' + 2% + 2° + wvnee 2l GP= m—
n =1_ (2i+1'1)= 2it1l_4
2-1

| Total number of nodes = 2i+1.1 |

Taking log on both sides,
height level Number of nodes b
1 0) commmosoesos log (2°) =log(n +1)
h log(22) = logz(n +1)
2 1 ====u=
h = log (n)
3 2 - So, height of the tree h = logz(n)
hooi
Total number of nodes = 2° + 2' + 2% + 2° + s 2!
n = ﬁ)_ aiti
2-1

I Total number of nodes = 2*1.1 I

Height/Depth of the tree = h= max. level + 1= i+ 1

n=2"_1=204

" = n+1

In the above tree black nodes are dummy nodes. They are not present.

root

The tree can be traversed using following traversal methods:

<+ Preorder
0 Visit the node
6 Recursively traverse left subtree in Preorder

6 Recursively traverse right subtree in Preorder
«» Inorder

0 Recursively traverse left subtree in Inorder

@ Visit the node

@ Recursively traverse right subtree in Inorder

<% Postorder
6 Recursively traverse left subtree in Postorder
@ Recursively traverse right subtree in Postorder
6 Visit the node

typedef struct node + NODE;

struct node
int info;
NODE llink;
b NODE rlink;
9

struct node *root;
OR
NODE root;

Linked representation
\{roid preorder (NODE root)

if (root== NULL) return;
printf (“ %d “, root—> info);
preorder (root — llink);
preorder (root—> rlink);

}

void inorder (NODE root)
if (root= NULL) return;
inorder (root—> llink);
printf (“ %d “, root—> info);

) inorder (root—> rlink);

void postorder (NODE root)

if (root== NULL) return;
postorder (root—> llink);
postorder (root—> rlink);
printf (“ %d*“, root—> info);

The tree can be traversed using following traversal methods:

< Preorder
G Visit the node
@ Recursively traverse left subtree in Preorder

6 Recursively traverse right subtree in Preorder
« Inorder

6 Recursively traverse left subtree in Inorder

@ Visit the node

6 Recursively traverse right subtree in Inorder

« Postorder
6 Recursively traverse left subtree in Postorder
@ Recursively traverse right subtree in Postorder
@ Visit the node

Array representation
void preorder (int root[], int i)

if (root [i] == 0) return;
printf (*“ %d “, root [i]);

preorder (root, 2%i + 1);
preorder (root, 2*i + 2);

}

void inorder (int root[], int i)

¢ if (root[i]== 0) return;
inorder (root, 2*i + 1);
printf (“ %d“, root[i]);

} inorder (root, 2*i + 2);

void postorder (int root[], int i)

if (root [i]== 0) return;
postorder (root, 2*i +1);
postorder (root, 2% i+ 2);
printf (“ %d“, root [i]);

The tree can be traversed using following traversal methods:
< Preorder
€ Visit the node

@ Recursively traverse left subtree in Preorder

6 Recursively traverse right subtree in Preorder
<+ Inorder

6 Recursively traverse left subtree in Inorder

* »
@ Visit the node &
6 Recursively traverse right subtree in Inorder gt v ’
+ Postorder i /e i
6 Recursively traverse left subtree in Postorder - Tk duwet™ "
6 Recursively traverse right subtree in Postorder 0 Preorder :A B DEHCF I G
© Visit the node @Morder :D BHEAF I CG
@ >Postorder : D HE BI F G C A
The tree can be traversed using following traversal methods: Root
< Preorder
0 Visit the node

@ Recursively traverse left subtree in Preorder

6 Recursively traverse right subtree in Preorder
«» Inorder

0 Recursively traverse left subtree in Inorder
@ Visit the node

6 Recursively traverse right subtree in Inorder
+ Postorder

6 Recursively traverse left subtree in Postorder

@ Recursively traverse right subtree in Postorder
6 Visit the node

@Preorder :ABDEHCTFI G
@Inorder

:DBHEAFI CG
©2Postorder : D HEBI F GC A

saividya.ac.in

The tree can be traversed using following traversal methods:

< Preorder
€ Visit the node
e Recursively traverse left subtree in Preorder

6 Recursively traverse right subtree in Preorder
< Inorder

0 Recursively traverse left subtree in Inorder

6 Visit the node

e Recursively traverse right subtree in Inorder

«» Postorder
6 Recursively traverse left subtree in Postorder Infix :(6+(3-2)*5)72+3
6 Recursively traverse right subtree in Postorder o P
6 Visit the node

:+ A + 6 * - 3 2 5 2 3
Inorder : 6 + 3 - 2 * 5§ A~ 2 + 3
@Postorder :t6 3 2 - 5 %« + 2 A~ 3 +

saividya.ac.in

The tree can be traversed using following traversal methods:

<« Preorder
€ Visit the node
e Recursively traverse left subtree in Preorder

e Recursively traverse right subtree in Preorder
«» Inorder

0 Recursively traverse left subtree in Inorder

e Visit the node

6 Recursively traverse right subtree in Inorder

« Postorder
@ Recursively traverse left subtree in Postorder
@ Recursively traverse right subtree in Postorder
6 Visit the node

Preorder : 100 50 30 60 55 200 150 160 300
Tree sort | @) Inorder : 30 50 55 60 100 150 160 200 300 |
Postorder : 30 55 60 50 160°150° 300 200 100

saividya.ac.in

void inorder (NODE root)

{ NODE cur, stack[20] ; 3500 <
int top = -1; 8000 ><X
if (root== NULL) LS00k
. . 2500 XX
printf (“List is empty\n*);
return; 3000 ><
=% 9000 X
cur = root; S 2000 <
for (5;) 1000 >X
while (cur != NULL) /I Reach leftmost node
s [++top | = cur; // Push the node
cur = cur —>llink; // Traverse left subtree
if (top = -1) return; // All nodes have been visited
cur = s[top--]; / Remove the node from stack
printf (“ %d “, cur—> info); // Visit the node @Inorder 30 50 55 60 100 150 160 200 300
) cur = cur —>rlink; // Traverse right subtree v v v v v v Vv v

}

Definition: The nodes in a tree are numbered starting with root

on level 0, continuing with the nodes on level 1, level 2 and so on.
Nodes on any level are numbered from left to right. Visiting the
nodes using the ordering suggested by node numbering is called
level order traversal of a tree.

void level _order (NODE root) q
{ NODE cur, q[20];

int front, rear;

if (root == NULL)

printf (“Tree is empty\n”) ;
} return;

front = 0, rear = -1;
q [++rear]| = root;

whyle (front <= rear)
cur = queue [front++];

// Delete from queue

printf (“ %d “, cur—info); // Visit the node
if (cur—>1llink != NULL) ~ //yyqert Jeft child into q
q [++rear |= cur—>llink;
if (cur —>rlink != NULL) // Insert right child into q
q [++rear |= cur—>rlink;

} printf(“\n “);

saividya.ac.in

Observe the following points:
¢ Total number of nodes =
4 Number of actual addresses

head
¢ Number of NULL links

n-1
¢ Total number of links =14 =2n gt
¢ NULL links are more than the actual addresses n“
¢ There are n + 1 NULL links out of 2n total links
Disadvantages of binary trees B [0
¢ Wasting memory simply by storing \0 characters
¢ Traversing a tree uses implicit stack in case of

C
N] D |of | E [\ o] F o]
recursive traversal and uses explicit stack in case of
iterative traversal. So, most of the time is spend in
push and pop operations.

¢ Traversing a binary tree is time consuming.

I
®
I

Note: All the above disadvantages can be overcome using threaded binary trees.

saividya.ac.in

Definition: In a threaded binary tree, all the NULL links are replaced by actual addresses called threads.
<« Ifleft link of a node is NULL, replace it with its inorder predecessor

if exists. Otherwise, replace it with address of header node. -
If right link of a node is NULL, replace it with its inorder successor ..~"
if exists. Otherwise, replace it with address of header node. ;:
A binary tree where all the NULL links are replaced by
actual addresses (either inorder predecessor or inorder :
successor or header node) is called a threaded binary tree. d

The structure can be defined as shown below: i1
struct node [No Title]

K2
L 4

k3
o
l“-“

2
o<

int info;

struct node *llink; \d| D

% struct node *rlink;
9

typedef struct node * NODE ;

The header node can be declared as shown below:

struct node *head ; Inorder traversa: D B A E G C F
OR

NODE head;

2
o<

saividya.ac.in

To represent a threaded binary tree in memory
< We must be able to distinguish between normal link
and a thread.
< Itis done by adding two additional fields to the node
structure :
Ithread : 1 - llink is a thread (denoted by dotted arrow)
0 — llink is normal link (denoted by black arrow)

rthread : 1 - rlinkis a thread (denoted by dotted arrow)
0 — rlink is normal link (denoted by black arrow)

struct node

int info;
short int Ithread;
struct node *llink;
short int rthread;
% struct node *rlink;
’

typedef struct node * NODE ;

< An empty tree can be represented as shown below: Fig. Memory representation of a threaded binary tree

head Inorder traversal: D B A E G C F

saividya.ac.in

The function to find ingrder successor can be written as shown below:
1{\IODE inorder_successor (NODE x)

NODE cur;
cur = x—>rlink; // Get the address of right node

if (x = rthread = 1) return cur;

// Keep moving left till you get thread in left link
while (cur —> lthread = 0) cur = cur — llink;
return cur;

}

The function to traverse the tree in inorder is shown below:
void inorder (NODE head)

NODE cur;
cur = head;
for (5;)
cur = inorder_successor (cur); Fig. Memory representation of a threaded binary tree
C lf(. cur == head) l'etlll'l.l; Inorder traversa: D B A E G C F
printf (“%d ”, cur—>info);

VYV VY
}

saividya.ac.in

MODULE -4
——————— e ——

Definition: A dictionary is a collection of pairs (key, item) where
< The first component of the pairis the key
« The second component of the pair is the item which represent associated information with respect to key.

« No two pairs have the same key in the dictionary i.e., key is alwaysunique.

<

* For example,

Key Item

9845070827 Padma Reddy No. 256, 2" main, Bengaluru.
9900170827 Padma Reddy No. 256, 2"d main, Bengaluru.
888888888 Mithil No. 256, 2" main, Bengaluru.
999999999 Monalika No. 256, 2" main, Bengaluru.

(Mobile Number) (Name with postal address)

In the above dictionary, telephone number is considered as the ey and name of the person along with postal address
is considered as the item associated with key.

%
o2

Definition: An Abstract data type Dictionary in short called ADT Dictionary is defined as
< Collection of n pairs (key, item) where each pair has a key along with associated item and
< Set of various operations to be performed on those items (objects).
< The operations specified may be insert, delete, display dictionary contents, search etc.
< ADT Dictionary is
¢ Objects : Collection of n pairs where each pair has a key and an associated item such as
* key :element to be searched.
* item : information such as name, address etc.
*d :Dictionary
°n : Number of pairs (key, item)
¢ Functions :
void insert (item, key, d) :: Insert the itern with key into dictionary d
void is_empty (d, n) :: if n =0 return TRUE else return FALSE
void delete_item (key, d) :: If key is present in dictionary d, delete the entry
otherwise display ”key not found”
void search (key, d) :: if key is present in dictionary return the corresponding item else return 0

Note: ADT dictionary can be efficiently implemented using binary search tree.

saividya.ac.in

Definition: A binary search tree is a binary tree which is either empty or non-empty. If it is not empty, it must satisfy
the following properties:

« Each node has exactly one key and all keys must be different.

< For each node say x in the tree, all the the keys in the left subtree must beless than key (x)

< For each node say x in the tree, all the the keys in the right subtree must be greater than key (x)
+ For example, all the binary trees shown below are binary search trees.

Root Root
Empty tree
Fig. (a) Fig. (b) Fig. (c) Fig. (d)
saividya.ac.in
Problem : Create a binary search tree for the following items:
100 50 200 30 60 55 150 160 300 58
VISV AN A Sten 4: item =30
Initial = Step 1: item =100 Step 2: item =50 Step 3: item =200 ep 4: item =
Root Root Root Root Root
Step 5: item =60 Step 6: item =55 W St R =TT
Root Root Root

(100
(%) 20)

OO

saividya.ac.in

Problem : Create a binary search tree for the following items:

100 50 200 30 60 55 150 160 300 S8
vvy vvvvy v v v VvV

Step 8: item =160
Root

Step 9: item =300 Step 10: item =58
Root Root

NODE insert (int it NODE t
Case 1: Tree is empty {0 insert (int item, NODE root)

Root temp NODE temp, prey, cur ;
00

// create a node
- @ temp = getnode ();
item =55 temp —> info = item;

temp —> llink = temp — rlink= NULL;

// Insert a node for the first time
if (root == NULL) return temp;

Case 2: Tree is existing

// Find the appropriate place to insert
cur = root;
while (cur != NULL)
prey = cur;
if (item < cur —> info)
cur = cur—>llink ;

else q
cur = cur —>rlink;

}

/[Insert the item at appropriate place
if (item < prev — info)
prev —>llink = temp ;

A5 prev —> rlink = temp ;

} return root;

saividya.ac.in

Case 1: Tree is empty

Root
item =55

temp

Case 2: Tree is existing

item =55

temp

1{\IODE insert (int item, NODE root)

NODE temp, prey, cur ;

temp = getnode ();
temp —> info = item;
temp —> llink = temp —> rlink= NULL;

if (root == NULL) return temp;

cur = root;
while (cur !'= NULL)

prev = cur;

if (item == cur —> info) {
printf (“Duplicate item *);
free (temp); return root;

}
if (item < cur —> info)

cur = cur—>llink ;
else

}

if (item < prev —> info)
prev —>llink = temp ;
prev —> rlink = temp ;

cur = cur —>rlink;

else

return root;

int search (int item, NODE root)
NODE cur;

if (root == NULL) return 0;

cur = root;

while (cur != NULL)
{ if (item == cur — info) return 1;
if (item < cur —> info)

cur

else
cur

}

return 0;

cur —>llink ;

cur —>rlink;

#include <stdio.h> void main ()
#include <stdlib.h> { int choice, item;

struct node NODE root=NULL;

{ for (35)
int i; U printf (“1L:Insert 2:Preorder 3:Inorder: “);
struct node * llink; printf (“4:Postorder 5:Search 6:Exit:“);
) struct node + rlink; scanf (“%d “, &choice);
g switch (choice)
typedef struct node * NODE; casel : printf (“ Enter the item : ©“); scanf (“%d “, &item);
root = insert (item, root) ;
NODE getnode ()3 break;
case2 : if (root == NULL) {
NODE insert (int item, NODE root);) printf (“Tree is empty\n”) ; break;

int search (int item , NODE root);

3 3) o . .
void preorder (NODE root); printf (“Preorder :”); preorder (root); break;

void inorder (NODE root); case S : printf (“ Enter the item : “); scanf (“%d ¢, &item);
void postorder (NODE first); flag = search (item, root);
if (flag == 1

)
printf (“ Item found \n “);
else rintf (“ Item found \n “)

printf (“ Item not found \n “);

break;
} default: exit(0);

saividya.ac.in

Case 1: Tree is empty

Root

NODE search (intitem, NODE root) item = 100

if (root ==NULL) return NULL;

if (item == root—>info) return root; Case 2: Tree is existing

if (item < root—>info)

return search (item, root—>llink); Root

return search (item, root—>rlink) ;

int count=0;

void count_node (NODE root)

{ if (root ==NULL) return;
count_node (root—>llink) ;

count++;
count_node (root—>rlink) ;

}

int count=0;

void count leaf (NODE root)
{ if (root ==NULL) return;

count_leaf (root—>llink);

if (root—>llink == NULL && root—>rlink=—= NULL) count++;
count_leaf (root—>rlink);

int max (int a, int b)

return 2 > b ?2 a:b

int height (NODE root)

if (root ==NULL) return 0;
} return 1+ max (height (root— llink) , height (root— rlink)) ;

Recursive definition to find height of the tree

0 if root ==\
H t) =
(root) 1+ max (H (root —> llink) , H (root —> rlink)) otherwise

1 + MAX (Height= 2, Height= 3)

saividya.ac.in

Ific 6+@3-2)*5)~2+3 Postixz|6]3 2] -|s[*[+]2]~[3[+]w] | |
vy v vv vV Vv VvV vV VYV

NODE create_expression_tree (char postfix [])

{

NODE temp, stack [20 |;
shéo for (i=0; postfix [i] != 0% i++)
2)60 temp = getnode ();
2560 temp —> info = postfix [i];
]360 temp —> llink = temp —> rlink= NULL;

if (isalnum (temp —> info))
p
stack [++top | = temp;

2)60 else ’
5340 { temp —> rlink = stack [top-- |;
1360 temp — llink = stack [top-- |;
7)@ } stack [++top | = temp;

}
3o
Stack } return s [top--|;

saividya.ac.in

Definition: A selection tree or tournament tree is a tree data structure
which is used to select a winner in a knockout tournament.

< The leaves of the tree represent players entering the tournament
< Each internal node represent a winner or a loser in the match.

< If the internal nodes in a tree represent winners the tree is
called winner tree.

< If the internal nodes in a tree represent losers the tree is
called loser tree.
«» The two types of selection trees are:
¢ Winner tree
¢ Loser tree

Loser tree
Note: Using selection treeswe can sort the elements in ascending/descending order

saividya.ac.in

Definition: A selection tree where each internal node represents the winner

is called winner tree. A winner tree is a complete binary tree with n-leaf
nodes and n - 1 internal nodes where
< Each internal node records the winner of the match.
< A winner tree can be either a min winner tree or
max winner tree.
< To determine the winner of the match, we assume that
each player is associated with a value.
¢ In a min winner tree, each internal node represents Pl
the smaller of its two children i.e., the player with ayers
the smaller value wins.

¢ In a max winner tree, each node represents
the larger of its two children i.e., the player with
the larger value wins.

Min winner tree
Number of leaves =8=n
Number of internal nodes = 7 = n-1

< The root node represents the smallest node in min winner tree.
< The root node represents the largest node in max winner tree.

Note: If two value are same, the left child will be the winner.

Max winner tree

saividya.ac.in

< A set of records arranged in ascending order is input to get a winner tree.
These sets of records arranged in ascending are called runs.

« Initially, take the first item from each run and treat them as
leaves of a tree.

< Between every two players, select the smaller item and elevate
to parent position.

< Each non-leaf node in the tree represent the winner in the
tournament and the root node contains the smallest item

indicating winner of the tournament. m m m
) ey gt sl eprsnation. 16 ool i |3 e
< The number above the node indicates the position of that node - . -

in array representation.

runl run2 run3 run4 run5 run6 run7 run8
«* The root node contains smallest item. Remove the root node

and output. Output: 6

< After removing the smallest node, obtain the next node from
corresponding run.

« A set of records arranged in ascending order is input to get a winner tree. 0 0
These sets of records arranged in ascending are called runs.

<« Initially, take the first item from each run and treat them as 1 Q 2 Q
leaves of a tree.

< Between every two players, select the smaller item and elevate 3 O 4 @ 5 6 6 @
to parent position.

< Each non-leaf node in the tree represent the winner in the E @ : 0 @ @ 0 o @ @

tournament and the root node contains the smallest item

indicating winner of the tournament. E m m m m m m m
ey oy o el eprnaton (16][] e[| [
+« The number above the node indicates the position of that node - - - -

in array representation.

runl run2 run3 run4 run5 run6 run7 run8
«* The root node contains smallest item. Remove the root node

and output. Output: 6 8

< After removing the smallest node, obtain the next node from
corresponding run.

«» Now, reconstruct the winner tree by playing the tournament
along the path from root node

< A set of records arranged in ascending order is input to get a winner tree.
These sets of records arranged in ascending are called runs.

< Initially, take the first item from each run and treat them as
leaves of a tree.

< Between every two players, select the smaller item and elevate
to parent position.

<+ Each non-leaf node in the tree represent the winner in the
tournament and the root node contains the smallest item

indicating winner of the tournament. E m m m m m m
< a ::ianyn::pt:::eﬁlt:% (l:ﬁ)rg;r;:ﬁl;:;dt:esilslg sequential representation m m = g E %
< The number above the node indicates the position of that node - - - .

in array representation.

runl run2 run3 run4 run5 runé run7 run$
«+ The root node contains smallest item. Remove the root node

and output. Output: 6 8 9
< After removing the smallest node, obtain the next node from
corresponding run.

+» Now, reconstruct the winner tree by playing the tournament
along the path from root node

saividya.ac.in

¢ A set of records arranged in ascending order is input to get a winner tree.
These sets of records arranged in ascending are called runs.

< Initially, take the first item from each run and treat them as
leaves of a tree.

< Between every two players, select the smaller item and elevate
to parent position.

< Each non-leaf node in the tree represent the winner in the
tournament and the root node contains the smallest item

indicating winner of the tournament. m m m m m m m
B ey e 1 B | 1 1Y 1
< The number above the node indicates the position of that node - - - - -

in array representation.

runl run2 run3 run4 run5 run6 run7 run8
¢ The root node contains smallest item. Remove the root node

and output. Output: 6 8 9 9

< After removing the smallest node, obtain the next node from
corresponding run.

<+ Now, reconstruct the winner tree by playing the tournament
along the path from root node

saividya.ac.in

¢ A set of records arranged in ascending order is input to get a winner tree.

These sets of records arranged in ascending are called runs.

« Initially, take the first item from each run and treat them as
leaves of a tree.

< Between every two players, select the smaller item and elevate
to parent position.

< Each non-leaf node in the tree represent the winner in the

tournament and the root node contains the smallest item
indicating winner of the tournament.

< A winner tree may be represented using sequential representation
(array representation) for binary trees

+« The number above the node indicates the position of that node
in array representation.

«» The root node contains smallest item. Remove the root node
and output.

< After removing the smallest node, obtain the next node from
corresponding run.

+» Now, reconstruct the winner tree by playing the tournament
along the path from root node

[15] [38][20] [2s] [50] [r6]]os] [rs]
o] [[0 [28] [[|]o0] [2o]
]]]

runl run2 run3 run4 run5 run6é run7 run$

IOutput: 6 8 9 9 10 andsoon. |
tournament tree (Winner tree) sort

Definition: A selection tree where each internal node represents the loser
is called loser tree. A loser tree is a complete binary tree with n-leaf nodes

and n - 1 internal nodes where

< Each internal node records the loser of the match.

< To determine the loser of the match, we assume that
each player is associated with a value.

«» In aloser tree, each internal node represents the loser.
i.e., we select a player who loses the match.

+« The final player who has not lost any match is the winner

of the tournament and it is written right above the root node. Players (10) (9) (20) (6) (8)

Loser tree v
Number of leaves =8=n
Number of internal nodes = 7 = n-1

< A set of records arranged in ascending order is input to get a loser tree. 0 0 Winner

These sets of records arranged in ascending are called runs.

K2
£X3

Initially, take the first item from each run and treat them as
leaves of a tree.

» Among the players, select a player who lost the match

and elevate to parent position.

<o

<o

* Each non-leaf node in the tree represent the loser in the
tournament and a person who has not lost is the winner
of the tournament.
+« The winner is indicated by parent of root node and contains
the smallest item.

< The loser tree may be represented using sequential representation
(array representation) for binary trees

<+ The number by the side of the node indicates the position of
that node in array representation.

+ The parent of root contains smallest item. Remove the root node
and output.

< After removing the smallest node, obtain the next node from
corresponding run.

runl run2 run3 run4 run5 runé run7 run8

Output: 6

saividya.ac.in

< A set of records arranged in ascending order is input to get a loser tree. 0 Q Winner
These sets of records arranged in ascending are called runs.

<o

» Initially, take the first item from each run and treat them as
leaves of a tree.

< Among the players, select a player who lost the match

and elevate to parent position.

e
”Q

Each non-leaf node in the tree represent the loser in the
tournament and a person who has not lost is the winner
of the tournament.

23
¢

The winner is indicated by parent of root node and contains
the smallest item.

The loser tree may be represented using sequential representation
(array representation) for binary trees

» The number by the side of the node indicates the position of
that node in array representation.

K3
o

<o

+« The parent of root contains smallest item. Remove the root node runl run2 run3 run4 runS runé run7 run8

and output. Output: 6 8
< After removing the smallest node, obtain the next node from
corresponding run.

saividya.ac.in

< A set of records arranged in ascending order is input to get a loser tree. 0 Q Winner
These sets of records arranged in ascending are called runs.

< Initially, take the first item from each run and treat them as
leaves of a tree.

» Among the players, select a player who lost the match
and elevate to parent position.

RS

e
”Q

Each non-leaf node in the tree represent the loser in the
tournament and a person who has not lost is the winner

of the tournament.

The winner is indicated by parent of root node and contains
the smallest item.

% The loser tree may be represented using sequential representation
(array representation) for binary trees

2
o

o

o

* The number by the side of the node indicates the position of
that node in array representation.

+«» The parent of root contains smallest item. Remove the root node runl run2 run3 run4 runS run6 run7 run8

and output. Output: 6 8 9
< After removing the smallest node, obtain the next node from
corresponding run.

saividya.ac.in

< A set of records arranged in ascending order is input to get a loser tree.

These sets of records arranged in ascending are called runs.
<« Initially, take the first item from each run and treat them as
leaves of a tree.

Among the players, select a player who lost the match
and elevate to parent position.

e
o<

23
o

Each non-leaf node in the tree represent the loser in the
tournament and a person who has not lost is the winner

of the tournament.

The winner is indicated by parent of root node and contains

the smallest item.

* The loser tree may be represented using sequential representation
(array representation) for binary trees

e
o o

o

K3
”Q

The number by the side of the node indicates the position of
that node in array representation.

< The parent of root contains smallest item. Remove the root node
and output.

< After removing the smallest node, obtain the next node from
corresponding run.

runl run2 run3 run4 run5 run6 run7 run$

Output: 6 8 9 9

saividya.ac.in

These sets of records arranged in ascending are called runs.
< Initially, take the first item from each run and treat them as
leaves of a tree.

% Among the players, select a player who lost the match
and elevate to parent position.

o

e

% Each non-leaf node in the tree represent the loser in the
tournament and a person who has not lost is the winner

of the tournament.

The winner is indicated by parent of root node and contains

the smallest item.

The loser tree may be represented using sequential representation
(array representation) for binary trees

e
£x3

e
£

K2

% The number by the side of the node indicates the position of
that node in array representation.

+« The parent of root contains smallest item. Remove the root node
and output.

< After removing the smallest node, obtain the next node from
corresponding run.

< A set of records arranged in ascending order is input to get a loser tree.

runl run2 run3 run4 run5 runé run7 run8

Output: 6 8 9 9 10

saividya.ac.in

¢ A set of records arranged in ascending order is input to get a loser tree.
These sets of records arranged in ascending are called runs.

<

» Initially, take the first item from each run and treat them as
leaves of a tree.

Among the players, select a player who lost the match

and elevate to parent position.

e
%

R
%

Each non-leaf node in the tree represent the loser in the
tournament and a person who has not lost is the winner

of the tournament.

+¢ The winner is indicated by parent of root node and contains

the smallest item.

The loser tree may be represented using sequential representation
(array representation) for binary trees

The number by the side of the node indicates the position of
that node in array representation.

RS
£x3

K3
%

+» The parent of root contains smallest item. Remove the root node runl run2 run3 run4 runS run6 run7 run
and output. |Output: 68 9 9 10 and so on. |

< After removing the smallest node, obtain the next node from tournament tree (Loser tree) sort
corresponding run.

saividya.ac.in

Chapter 11: Graphs

What are we studying in this chapter?

Definitions

Terminologies

Matrix and Adjacency List Representation of Graphs
Elementary Graph operations

Traversal methods:

= Breadth First Search

= Depth First Search

* & & o o

11.1 Introduction

In this chapter, let us concentrate another important and non-linear data structure called
graph. In this chapter, we discuss basic terminologies and definitions, how to represent
graphs and how graphs can be traversed.

11.2 Graph Theory terminology
First, let us see “What is a vertex?”

Definition: A vertex is a synonym for a node. A vertex is normally represented by a
circle. For example, consider the following figure:

@
©) @®

Fig Vertices

In the above figure, there are four nodes identified by 1, 2, 3, 4. They are also called
vertices and normally denoted by aset V = {1, 2, 3, 4}.

Now, let us see “What is an edge?”

Definition: If u and v are vertices, then an arc or a line joining two vertices u and v is
called an edge.

Example 1: Consider the figure: . .

11.2 B Graphs

Observe the following points from above figure:

¢

There is no direction for the edge between vertex 1 and vertex 6 and hence it is
undirected edge.

The undirected edge is denoted by an ordered pair (1, 6) where 1 and 6 are called end
points of the edge (1, 6). In general, if e = (u, v), then the nodes u and v are called end
points of directed edge.

In this graph, edge (1, 6) is same as edge (6, 1) since there is no direction associated
with that edge. So, (u, v) and (v, u) represent same edge.

Example 2: consider the figure:

Observe the following points from above figure:

¢

There is a direction for the edge originating at vertex 1 (called tail of the edge) and
heading towards vertex 6 (called head of the edge) and hence it is called directed
edge.

The directed edge is denoted by the directed pair <1, 6> where 1 is called tail of the
edge and 6 is the head of the edge. So, the directed pair <1, 6> is not same as directed
pair <6, 1>.

In general, if a directed edge is represented by directed pair <u, v>, u is called the tail
of the edge and v is the head of the edge. So, the directed pair <u, v> is different from
the directed pair <v, u>. So, <u, v> and <v, u> represent two different edges.

Now, let us see “What is a graph?”

Definition: Formally, a graph G is defined as a pair of two sets V and E denoted by

G=(V, E)
where V is set of vertices and E is set of edges. For example, consider the graph shown
below:
o @ Here, graph G = (V, E) where
¢ V={1,2 34,5 6} issetof vertices
e 6 ¢ E={<1,6> <1, 2> <2, 3> <4, 3>, <5, 3> <5, 6>,
e <6, 4> } is set of directed edges

9 Note:
¢ |V|=H1, 2, 3, 4,5, 6} = 6 represent the number of
vertices in the graph.

Data Structures using C - 11.3

¢ |El = {<1, 6>, <1, 2>, <2, 3>, <4, 3>, <5, 3>, <5, 6>, <6, 4> }| = 7 represent the
number of edges in the graph.

Now, let us see “What is a directed graph? What is an undirected graph?”

Definition: A graph G = (V, E) in which every edge is directed is called a directed graph.
The directed graph is also called digraph. A graph G = (V, E) in which every edge is
undirected is called an undirected graph. Consider the following graphs:

Here, graph G = (V, E) where

' ¢ V={0,1,2} issetof vertices

0 ¢ E={<0,1> <1,0>, <1, 2>}is set of edges

Note: Since all edges are directed it is a directed graph.
In directed graph we use angular brackets < and > to

@ represent an edge

Here, graph G = (V, E) where

¢ V={1,234,56,7, 8} issetof vertices

¢ E={(1,5),(1,6),(57),(6,8),(6,4),(8,3),(8,2)}is
set of edges

Note: Since all edges are undirected, it is an undirected
graph. In undirected graph we use parentheses (and) to
represent an edge (u, v).

Now let us see “What is a self-loop (or self-edge)? self-loop self-loop

Definition: A loop is an edge which starts and ends on the

same vertex. A loop is represented by an ordered pair (i, 1). o e
This indicates that the edge originates and ends in the same

vertex. A loop is also called self-edge or self-loop. In the

given graph shown below, there are two self-loops

namely, <1, 1> and <4, 4>. 9

Now, let us see “What is a multigraph?”

11.4 B Graphs

Definition: A graph with multiple occurrence of the
same edge between any two vertices is called multigraph.
Here, there are two edges between the nodes 1 and 4 and
there are three edges between the nodes 4 and 3.

Now, let us see “What is a complete graph?”

multiple edges

Definition: A graph G = (V, E) is said to be a complete graph, if there exists an edge
between every pair of vertices. The graph (a) below is complete. Observe that in a
complete graph of n vertices, there will be n(n-1)/2 edges. Substituting n = 4, we get 6
edges. Even if one edge is removed as shown in graph (b) below, it is not complete graph.

Complete graph

Now, let us see “What is a path?”

Definition: Let G = (V, E) be a graph. A
path from vertex u to vertex v in an
undirected graph is a sequence of adjacent
vertices (u, Vo, V1, Vz,....vk, V) such that:

(u, Vo), (Vo, V1),....(Vk, V) are the edges in
G. Consider the following graph:

In the graph, the path from vertex 1 to 4
is denoted by: 1, 2, 3, 4 which can also be
written as (1, 2), (2, 3), (3, 4).

Not a complete graph

Definition: Let G = (V, E) be a graph. A
path from vertex u to vertex v in a directed
graph is a sequence of adjacent vertices <u,
Vo, V1, V2,....vk, V> such that <u, vo>, <vy,
vi>,....<vk, V> are the edges in G. Consider
the following graph:

Gvﬁ
@—0

In the graph, the path from vertex 1 to 3 is
denoted by 1, 4, 2, 3 which can also be
written as <1, 4>, <4, 2>, <2, 3>

Data Structures using C - 11.5

Now, let us see “What is simple path?”

Definition: A simple path is a path in which all vertices except possibly the first and last
are distinct. Consider the undirected and directed graph shown below:

Ex 1. In the graph, the path 1, 2, 3, 4is Ex 1: In the graph, the path 1, 4, 2, 3 is
simple path since each node in the simple path since each node in the
sequence is distinct. sequence is distinct.

Ex2: In the graph, the path 1, 2, 3, 2 is not Ex 2: The sequence 1, 4, 3 is not a path

a simple path since the nodes in sequence since there is no edge <4, 3> in the graph.
are not distinct. The node 2 appears twice

in the path

Now, let us see “What is length of the path?”

Definition: The length of the path is the number of edges in the path.

Ex 1: In the above undirected graph, the path (1, 2, 3, 4) has length 3 since there are three
edges (1, 2), (2, 3), (3, 4). The path 1, 2, 3 has length 2 since there are two edges (1, 2),
2, 3).

Ex 2: In the above directed graph, the path <1, 2, 3, 4> has length 3 since there are three
edges <1, 2>, <2, 3>, <3, 4>, The path <1, 4, 2> has length 2 since there are two edges
<1, 4>, <4, 2>.

Now, let us “Define the terms cycle (circuit)?”

Definition: A cycle is a path in which the first and last vertices are same.

For example, the path <4, 2, 3, 4> shown in above directed graph is a cycle, since the first
node and last node are same. It can also be represented as <4, 2>, <2, 3>, <3, 4> <4, 2>,

Note: A graph with at least one cycle is called a cyclic graph and a graph with no cycles
is called acyclic graph. A tree is an acyclic graph and hence it has no cycle.

Now, let us see “What is a connected graph?”

11.6 B Graphs

Definition: In an undirected graph G, two vertices u and v are said to be connected if
there exists a path from u to v. Since G is undirected, there exists a path from v to u also.
A graph G (directed or undirected) is said to be connected if and only if there exists a
path between every pair of vertices.

For example, the graphs shown in figure below are connected graphs.

Figure Connected graphs

Now, let us see “What is a disconnected graph?”

Definition: Let G = (V, E) be a graph. If there exists at least one vertex in a graph that
cannot be reached from other vertices in the graph, then such a graph is called
disconnected graph. For example, the graph shown below is a disconnected graph.

Since vertex 1 is
not reachable
from 3, the graph
is not connected

Not connected

11.3 Representation of graph

Now, let us see “What are the different methods of representing a graph?” The graphs can
be represented in two different methods:

—» Adjacency matrix

Representation of graph — i))
—» Adjacency linked list

Let us see “What is an adjacency matrix? explain with example”

Definition: Let G = (V, E) be a graph where V is set of vertices and E is set of edges. Let
N be the number of vertices in graph G. The adjacency matrix A of a graph G is formally
defined as shown below:

Data Structures using C - 11.7

. 1 if there is an edge from vertex i to vertex j.
it = {

0 if there is no edge from vertex i to vertex j.

¢ It is clear from the definition that an adjacency matrix of a graph with n vertices is a
Boolean square matrix with n rows and n columns with entries 1’s and 0’s (bit-
matrix)

¢ In an undirected graph, if there exists an edge (i, j) then a[i][j] and a[j][i] is made 1
since (i, j) is same as (j, i)

¢ In adirected graph, if there exists an edge <i, j> then a[i][j] is made 1 and a[j][i] will
be 0.

¢ If there is no edge from vertex i to vertex j, then a[i][j] will be 0.

Note: The above definition is true both for directed and undirected graph. For example,
following figures shows the directed and undirected graphs along with equivalent
adjacency matrices:

0 1 2 3
ojof1]1]1
110]0]1{0
210J0]0]1
3{0]11]0]0

(a) Directed graph Adjacency matrix
0 1 2 3
0{0]1]1]0
111]0]1f1
21111101
3(0]1]1]0
(b) Undirected graph Adjacency matrix
Fig. Graphs and equivalent adjacency matrices

Now, let us see “What is an adjacency list? explain with example”

11.8 B Graphs

Definition: Let G = (V, E) be a graph. An adjacency linked list is an array of n linked
lists where n is the number of vertices in graph G. Each location of the array represents a
vertex of the graph. For each vertex u € V, a linked list consisting of all the vertices
adjacent to u is created and stored in A[u]. The resulting array A is an adjacency list.

Note: It is clear from the above definition that if i, j and k are the vertices adjacent to the
vertex u, then i, j and k are stored in a linked list and starting address of linked list is
stored in A[u] as shown below:

A

o = I B o VI B e 34

For example, figures below shows the directed and undirected graphs along with
equivalent adjacency linked list:

A
ol T2l 321l T8 14 nodes adjacent to 0
1| 112 |/ nodes adjacent to 1
2 __> nodes adjacent to 2
3 __> nodes adjacent to 3

(a) Directed graph Adjacency linked list

A
O (Y ol 1] {2 /] nodes adjacent to 0
1 _%m—ﬂ 2| =3 /] nodesadjacent to 1
© B 2| T[0T F={1 T 3]/ nodesadjacent to 2

3|11] {2 |/] nodes adjacent to 3

(b) Undirected graph Adjacency linked list

Fig.: Graphs and equivalent adjacency linked lists

Data Structures using C - 11.9

Now, let us see “Which graph representation is best?” The graph representation to be

used depends on the following factors:

Nature of the problem

Algorithm used for solving

Type of the input.

Number of vertices and edges:

= If a graph is sparse, less number of edges are present. In such case, the
adjacency list has to be used because this representation uses lesser space
when compared to adjacency matrix representation, even though extra
memory is consumed by the pointers of the linked list.

= If a graph is dense, the adjacency matrix has to be used when compared with
adjacency list since the linked list representation takes more memory.

* & o o

Note: So, based on the nature of the problem and based on whether the graph is sparse or
dense, one of the two representations can be used.

Now, let us see “What is a weighted graph?”
Definition: A graph in which a number is assigned to each

edge in a graph is called weighted graph. These numbers 9 10 9
are called costs or weights. The weights may represent the

cost involved or length or capacity depending on the 20 30
problem. 9
For example, in the following graph shown in figure 9 70

the values 10, 20, 30 and 40 are the weights associated with
four edges <1,3>, <1,2>, <3,4> and <2,4>

Let us see “How the weighted graph can be represented?” The weighted graph can be
represented using adjacency matrix as well as adjacency linked list. The adjacency matrix
consisting of costs (weights) is called cost adjacency matrix. The adjacency linked list
consisting of costs (weights) is called cost adjacency linked list. Now, let us see “What is
cost adjacency matrix?”’

Definition: Let G = (V, E) be the graph where V is set of vertices and E is set of edges
with n number of vertices. The cost adjacency matrix A of a graph G is formally defined
as shown below:

o { w if there is a weight associated with edge from vertex i to vertex j.
Alillj] =
o0

if there is no edge from vertex i to vertex j.

11.10 B Graphs

It is clear from the above definition that

¢ The element in i row and j" column is weight w provided there exist an edge
from i vertex to j vertex with cost w

¢ oo if there is no edge from vertex i to vertex j.
¢ The cost from vertex i to vertex i is o (assuming there is no loop).

For example, the weighted graph and its cost adjacency matrix is shown below:

10 01 2 3
0 LlO 20 | oo
20 25 1] \nlS o0
2|0 30
20 @ 3|o]|25]| \r _
Note: Diagonal values
. i : b laced by 0’
(a) Weighted graph (b) Adjacency matrix can beeplacea by
Figure A weighted digraph and the cost adjacency matrix

For the undirected graph, the elements of the cost adjacency matrix are obtained using the
following definition:

. w if there is a weight associated with edge (i, j) or (j, 1)
auli :{w

if there is no edge from vertex i to vertex j.

The undirected graph and its equivalent adjacency matrix is shown below:

0 1 2 3
0 Lzs 10 | oo
10 20 1125 \&15 20
211015 30
30 8|]20 3OT Diagonal values can
@) (b) be replaced by 0’s

Figure: Weighted undirected graph and the adjacency matrix

Note: The cost adjacency matrix for the undirected graph is symmetric (i.e., a[i, j] is
same as a[j, i]) whereas the cost adjacency matrix for a directed graph may not be
symmetric.

Note: For some of the problems, it is more convenient to store 0’s in the main diagonal of
cost adjacency matrix instead of oo.

Data Structures using C - 11.11

Now, let us see “What is cost adjacency linked list?”

Definition: Let G = (V, E) be a graph where V is set of vertices and E is set of edges
with n number of vertices. A cost adjacency linked list is an array of n linked lists. For
each vertex u € V, A[u] contains the address of a linked list. All the vertices which are
adjacent from vertex u are stored in the form of a linked list (in an arbitrary manner) and
the starting address of first node is stored in A[u]. If i, j and k are the vertices adjacent to
the vertex u, then i, j and k are stored in a linked list along with the weights in A[u] as
shown below:

O liw [Fliw [k wel/]

For example, the figure below shows the weighted diagraph and undirected graph along
with equivalent adjacency list.

0] 4=[110TF—[220]]
1{ 1215 }|/]
2| 13,30 |/]
3| T7LL2s]

(b) adjacency list

10 O 4={110TF[220]]
1l 101041215 1[3.25 /]

2 | 71020 [4—{ 115 [T>{330 /]
—{ 1,25 [12,30 [/]

30

(c) weighted undirected graph (d) adjacency list

Figure weighted graph and equivalent adjacency list

11.12 B Graphs

Now, the function to read an adjacency matrix can be written as shown below:

Example 11.1: Function to read adjacency matrix

void read_adjacency matrix(int a[10][10], int n)

{ _ .
int i j;
for (i=0; i <n;i++)
{
for (j =0; j <n; j++)
{
scanf(“%d”, &a[i][j]);
}
}
}

The function to read adjacency list can be written as shown below:

Example 11.2: Function to read adjacency list

void read_adjacency_list (NODE a[], int n)

t
int i, j, m, item;
for (i=0;i<n;i++)
{
printf("Enter the number of nodes adjacent to %d:", i);
scanf("%d", &m);
if (m ==0) continue;
printf("Enter nodes adjacent to %d : "', i);
for j=0;j<m; j++)
{
scanf("%d", &item);
a[i] = insert_rear(item, a[i]);
}
}

Data Structures using C - 11.13

11.4 Graph traversals

Now, we concentrate on a very important topic namely graph traversal techniques and
see “What is graph traversal? Explain different graph traversal techniques”

Definition: The process of visiting each node of a graph systematically in some order
is called graph traversal. The two important graph traversal techniques are:

— Breadth Eirst Search (BFS)
— Depth Eirst Search (DFS)

11.4.1 Breadth First Search (BFS)
Now, let us see “What is breadth first search (BFS)?”

Definition: The breadth first search is a method of traversing the graph from an
arbitrary vertex say u. First, visit the node u. Then we visit all neighbors of u. Then
we visit the neighbors of neighbors of u and so on. That is, we visit all the
neighboring nodes first before moving to next level neighbors. The search will
terminate when all the vertices have been visited.

BFS traversal can be implemented using a queue. As we visit a node, it is inserted
into queue. Now, delete a node from a queue and see the adjacent nodes which have
not been visited. The unvisited nodes are inserted into queue and marked as visited.
Deleting and inserting operations as discussed are continued until queue is empty.

Now, let us take an example and see how BFS traversal can be used to see what are
all the nodes which are reachable from a given source vertex.

Example 11.3: Traverse the following graph by breadth-first search and print all the
vertices reachable from start vertex a. Resolve ties by the vertex alphabetical order.

Solution: It is given that source vertex is a. Perform the following activities:

11.14 B Graphs

Initialization: Insert source vertex a into queue and add a to S as shown below:

Initialization

Step 1:i): Delete an element a from queue

(i)

(ii) «

(i) >

v =adj.tou

Nodes visited S

gueue

u = del(Q)

a

ii): Find the nodes adjacent to a but not in S: i.e.,, b, c,dand e
iii): Add b, ¢, dand e to S, insert into queue as shown in the table:

Step 1

Step 2: i): Delete b from queue

Step 1
Step 2

Stage 3: 1) : Delete ¢ from queue

Step 1
Step 2

(i) (i) < (iii) >
u=del(Q) |v=adj.tou | Nodes visited S queue
- - a a
a b,c,de a,b,cde b,c,d, e
ii): Find nodes adjacentto b but notin S: i.e., f
iii): Add f to Sand insert f into queue as shown in table:
(i) (i) < (iii) >
u=del(Q) | v=adj.tou | Nodes visited S gqueue
- - a a
a b,c,d, e a,bcd, b,c,d e
b f .b,c,def c,de,f
ii): Find nodes adjacent to c but notin S: i.e., g
iii): Add g to S, insert g into queue as shown in table
(i) (i) < (iii) >
u=del(Q) | v=adj.tou | Nodes visited S gqueue
- - a a
a b,c,d,e a,b,cde b, c,d,
b f a,b,cde,f c,de,f
C g a,bcdefqg d,ef

Step 3

The remaining steps are shown in the following table:

Data Structures using C - 11.15

(i) (i) < (iii) >
u=del(Q) | v=adj.tou | Nodes visited S queue

Initialization - - a a

Step 1 a b,c,de a,b,cde b,c,d,e

Step 2 b a, df a,b,cdef c,def

Step 3 c a,0 a,b,cdefg |defqg

Step 4 d a,b,f a,bcdefg |efqg

Step 5 e a,9 a,bcdefg |fg

Step 6 f b, d a,b,cdefg |g

Step 7 g c.e a,b,cde fg |empty

ﬁ_/

Thus, the nodes that are reachable from source a: a, b, c, d, e, f, ¢

11.4.1.1 Breadth First Search (BFS) using adjacency matrix

The above activities are shown below in the form of an algorithm along with
pseudocode in C when graph is represented as an adjacency matrix.

no node is visited to start with /l'int s [10] = {0},
insert source u to q [f=0,r=-1,qg[++r] =u
print u /[printu
mark u as visited i.e.,add uto S /Is[ul=1
while queue is not empty I while f<=r
Delete a vertex u from q Il u = q[f++]
For every v adjacent to u Il for each v, if a[u][v] ==1
If v is not visited Il if s[v] ==
print v Il print v
mark v as visited Il sfvl]=1
Insert v to queue Il g[++r]=v
end if 1 endif
1 endif
end while /[end while

The above algorithm can be written using C function as shown below:

11.16 B Graphs

Example 11.4: C function to show the nodes visited using BFS traversal

void bfs(int a[10][10], int n, int u)

{

}

int f, r, q[10], v;
int s[10] = {0}; /* initialize all elements in sto O i.e, no node is visited */

printf("The nodes visited from %d : ", u);

f=0,r=-1, I/ queue is empty
g[++r] = u; /' Insert u into queue
s[u] = 1; I/l insertutos
printf(“%d “,u); // print the node visited
while (f<=r)
{
u = q[f++]; I/ delete an element from g

for (v=0; v<n;v++)

if (a[u][v] ==1) /I '1f v is adjacent to u
if (s[v] ==0) //Ifvisnotin Si.e., v has not been visited
{
printf(“%d “, v); // print the node visited
s[v]=1; // add v to s, mark it as visited
g[++r] =v; I Insert v into queue
}
}
}
}
printf(‘“\n”);

Now, the C program that prints all the nodes that are reachable from a given source
vertex is shown below:

Example 11.5: Algorithm to traverse the graph using BFS

#include <stdio.h>
/* Insert: Example 11.1: Function to read an adjacency matrix*/
/* Insert: Example 11.4: Function to traverse the graph in BFS */

Data Structures using C - 11.17

void main()

{
int n,a[10][10], source, i, j;

printf(“Enter the number of nodes : *);
scanf(“%d”, &n);

printf(“Enter the adjacency matrix:\n”);
for (i=0;i<n;i++)

{
}

for (source = 0; source < n; source++)
bfs(a, n, source);

for (j = 0; j <n; j++) scanf(“%d”, &a[i][j]);

}

Now, let us see how to obtain the nodes reachable from each node of the following
graph using the above program:

0O 1 2 3

@ o 0Ojoj11]1]0

110101 |1

2100]0]1

9 9 31010]J0]O
Given graph Adjacency matrix

Output
Enter the number of nodes: 4
Enter the adjacency matrix:
0110
0011
0001
0000
The nodes visited from 0: 0
The nodes visited from 1: 1
The nodes visited from 2: 2
The nodes visited from 3: 3

123
2 3
3

11.18 E Graphs

11.4.1.2 Breadth First Search (BFS) using adjacency list

We know that BFS traversal uses queue data structure which require insert rear
function and delete front function. We can use insert rear function given in example
8.6. But, the delete front function shown in example 8.5 is modified after deleting the
printf() function.

Example 11.6: C function to delete an item from the front end of singly linked list

NODE delete_front(NODE first)

{
NODE temp;
if (first==NULL) return NULL;
temp = first; /* Retain address of the node to be deleted */
temp = temp->link; /* Obtain address of the second node */
free(first); /* delete the front node */
return temp; /* return address of the first node */

}

The algorithm for BFS along with pseudocode when a graph is represented as an
adjacency list can be written as shown below:

no node is visited to start with /l'ints [10] = {0}

insert source u to q /l'qg=NULL, g = insert_rear(u, q);
mark u as visited i.e.,addutoS //s[u] = 1, printf(“%d “, u);
while queue is not empty /' while g '= NULL
u = g->info;
Delete a vertex u fromq // g = delete_front(q),

list = a[u]; // list of vertices adj. to U
Find vertices v adjacent to u // while (list I= NULL)

v = list->info;
If v is not visited Il if (s[v] ==0)
print v Il print v
mark v as visited Il slvl]=1
Insert v to queue Il q = insert_rear(v, q);
end if Il endif
list = list->link
Il end while

end while /I end while

Data Structures using C - 11.19

Now, the complete C function to traverse the graph using BFS when a graph is
represented as adjacency list can be written as shown below:

Example 11.7: C function to show the nodes visited using BFS traversal

void bfs(NODE a[], int n, int u)
{
NODE q, list;
int V;
int s[10] ={0}; /*initialize all elements in s to O i.e, no node is visited */

printf("The nodes visited from %d : ", u);

g = NULL; Il queue is empty
q = insert_rear(u, q); /I Insert u into queue
s[u] = 1; I/l insertutos
printf("%d ", u); // print the node visited
while (q!'=NULL) // as long as queue is not empty
{
u = g->info; // delete a node from queue

g = delete_front(q);

list = a[u]; // obtain nodes adjacent to u
while (list = NULL) /I as long as adjacent nodes exist
{
v = list->info; // v is the node adjacent to u
if (s[v] ==0) //IfvisnotinSi.e., v has not been visited
{
printf("%d ", v); // print the node visited
s[v] = 1; // add v to s, mark it as visited
g = insert_rear(v, q); // Insert v into queue
}
list = list->link;
}
}
printf(*\n");

11.20 B Graphs

Now, the complete C program to see the nodes reachable from each of the nodes in
the graph can be written as shown below:

Example 11.8: Program to print nodes reachable from a vertex (bfs using adjacency list)

#include <stdio.h>
#include <stdlib.h>
struct node

it _
int info;
struct node *link;

3
typedef struct node *NODE;

/* Insert: Example 8.2: Function to get a node */

/* Insert: Example 8.6: Function to insert an element into queue */

/* Insert: Example 11.2: Function to read adjacency list */

/* Insert: Example 11.6: Function to delete an element from front end of queue */

/* Insert: Example 11.7: Function to traverse the graph in BFS (adjacency list) */

void main()

{
int n, i, source;
NODE a[10];

printf(“Enter the number of nodes :);
scanf(“%d”, &n);

for (i=0;i<n;i++) afi] = NULL,; I/ Graph is empty to start with
read_adjacency _list(a, n);

for (source = 0; source < n; source++)
bfs(a, n, source);

Data Structures using C - 11.21

Now, let us see how to obtain the nodes reachable from each node of the following
graph using the above program:

© 0 al0l] —[IT F>[2TA
afl]) —{2] >3 [
a2l —3 |~

9 g a[3]‘/

Given graph Adjacency linked list

Input

Enter the number of nodes: 4

Enter the number of nodes adjacent 0: 2
Enter nodes adjacentto 0: 1 2

Enter the number of nodes adjacent 1: 2
Enter nodes adjacentto 1: 2 3

Enter the number of nodes adjacent 2: 1
Enter nodes adjacent to 2: 3

Enter the number of nodes adjacent 3: 0
Enter nodes adjacent to 3:

Output

The nodes visited from 0: 0
The nodes visited from 1: 1
The nodes visited from 2: 2
The nodes visited from 3: 3

123
23
3

11.4.2 Depth First Search (DFS)

The depth first search is a method of traversing the graph by visiting each node of the
graph in a systematic order. As the name implies depth-first-search means “to search
deeper in the graph”. Now, let us see “What is depth first search (DFS)?”

Definition: In DFS, a vertex u is picked as source vertex and is visited. The vertex u
at this point is said to be unexplored. The exploration of the vertex u is postponed and
a vertex v adjacent to u is picked and is visited. Now, the search begins at the vertex

11.22 B Graphs

v. There may be still some nodes which are adjacent to u but not visited. When the
vertex v is completely examined, then only u is examined. The search will terminate
when all the vertices have been examined.

Note: The search continues deeper and deeper in the graph until no vertex is adjacent
or all the vertices are visited. Hence, the name DFS. Here, the exploration of a node is
postponed as soon as a new unexplored node is reached and the examination of the
new node begins immediately.

Design methodology The iterative procedure to traverse the graph in DFS is shown
below:

Step 1: Select node u as the start vertex (select in alphabetical order), push u onto
stack and mark it as visited. We add u to S for marking

Step 2: While stack is not empty
For vertex u on top of the stack, find the next immediate adjacent vertex.
if v is adjacent
if a vertex v not visited then
push it on to stack and number it in the order it is pushed.
mark it as visited by adding vto S
else
ignore the vertex
end if
else
remove the vertex from the stack
number it in the order it is popped.
end if
end while

Step 3: Repeat step 1 and step 2 until all the vertices in the graph are considered

Example 11.9: Traverse the following graph using DFS and display the nodes reachable
from a given source vertex

Data Structures using C - 11.23

Solution: Since vertex a is the least in alphabetical order, it is selected as the start

vertex. Follow the same procedure as we did in BFS. But, there are two changes:

¢ Instead of using a queue, we use stack

¢ In BFS, all the nodes adjacent and which are not visited are considered. In DFS,
only one adjacent which is not visited earlier is considered. Rest of the procedure
remains same.

Now, the graph can be traversed using DFS as shown in following table

Stack v = adj(s[top]) | Nodes visited | pop(stack)
S
Initial step | a - a
Stagel |a b a,b -
Stage2 |a,b d a, b, d -
Stage3 |a,b,d f a,bdf -
Stage4 |a, b, d,f - ab,df f
Stage5 |a b, d - ab,df d
Stage6 |[a,b - ab,df b
Stage 7 a c a,bdf -
Stage 8 a,C g a,b,dfg -
Stage 9 acg e a,bdfge |-
Stage10 |ac,qg,e - a,b,dfge |e
Stage1l |ac,g - a,b,dfge |g
Stage12 |ac - a,bdfge |c
Stage 13 | a: - a,bdfge |ay

11.4.2.1 Depth First Search (DFS) using adjacency matrix

It is clear from the above example that the stack is the most suitable data structure to
implement DFS. Whenever a vertex is visited for the first time, that vertex is pushed on
to the stack and the vertex is deleted from the stack when a dead end is reached and the
search resumes from the vertex that is deleted most recently. If there are no vertices
adjacent to the most recently deleted vertex, the next node is deleted from the stack and
the process is repeated till all the vertices are reached or till the stack is empty.

The recursive function can be written as shown below: (Assuming adjacency matrix a,
number of vertices n and array s as global variables)

11.24 B Graphs

Example 11.10: Program to print nodes reachable from a vertex (dfs - adjacency matrix)

void dfs(int u)
o
intv;
s[u] = 1;

printf("%d ", u);

for (v=0; v <n; v++)
if (a[u][v] == 1 && s[v] == 0) dfs(v);

}

The complete program that prints the nodes reachable from each of the vertex given in
the graph can be written as shown below:

Example 11.11: Program to print nodes reachable from a vertex (dfs - adjacency matrix)

#include <stdio.h>
int a[10][10], s[10], n; // Global variables

/[* Insert: Example 11.1: Function to read an adjacency matrix*/
/* Insert: Example 11.10: Function to traverse the graph in DFS */

void main()

{

int i, source;

printf("Enter the number of nodes in the graph : *);
scanf("%d", &n);

printf("Enter the adjacency matrix:\n");
read_adjacency_matrix(a, n);

for (source = 0; source < n; source++)

{
for (i=0;i<n;i++)s[i] =0;
printf("\nThe nodes reachable from %d: ", source);
dfs(source);

}

Data Structures using C - 11.25

Now, let us see how to obtain the nodes reachable from each node of the following

graph using the above program:

0O (D

(2 (3

Given graph
Output
Enter the number of nodes: 4
Enter the adjacency matrix:
0110
0011
0001
0000
The nodes visited from 0: 0
The nodes visited from 1: 1
The nodes visited from 2: 2
The nodes visited from 3: 3

123
23
3

W N PO

ol|lo|o|o|o
ololo|r|-
ololrlr|r
olr|r|Io|w

Adjacency matrix

11.4.2.2 Depth First Search (DFS) using adjacency linked list

The procedure remains same. But, instead of using adjacency matrix, we use
adjacency list. The recursive function can be written as shown below: (Assuming
adjacency list a, number of vertices n and array s as global variables.)

Example 11.12: Program to print nodes reachable from a vertex (dfs - adjacency list)

void dfs(int u)
o
intv;
NODE temp;
s[u] =1,

printf("%d ", u);

for (temp = afu]; temp = NULL; temp = temp->link)
if (s[temp->info] == 0) dfs(temp->info);

11.26 B Graphs

The complete program that prints the nodes reachable from each of the vertex given in
the graph using DFS represented using adjacency list can be written as shown below:

Example 11.13: Program to print nodes reachable from a vertex (dfs - adjacency matrix)

#include <stdio.h>
#include <stdlib.h>

struct node

t .
int info;
struct node *link;

k

typedef struct node *NODE;

NODE a[10];
int s[10], n; /I Global variables

/* Insert: Example 8.2: Function to get a node */
/I* Insert: Example 8.6: Function to insert an element into queue */
/* Insert: Example 11.2: Function to read adjacency list */

/* Insert: Example 11.12: Function to traverse the graph in DFS */
void main()

{

int I, source;

printf("Enter the number of nodes in the graph : ");
scanf("%d", &n);

printf("Enter the adjacency list:\n");
read_adjacency _list(a, n);

for (source = 0; source < n; source++)

{
for (i=0;i<n;i++) s[i] =0;
printf("\nThe nodes reachable from %d: ", source);
dfs(source);

}

Data Structures using C - 11.27

Now, let us see how to obtain the nodes reachable from each node of the following
graph using the above program:

(0 @ a[0]

a[1]
a[2]

9 g a[3]

Given graph

Input

Enter the number of nodes: 4

Enter the number of nodes adjacent 0: 2
Enter nodes adjacentto 0: 1 2

Enter the number of nodes adjacent 1: 2
Enter nodes adjacentto 1: 2 3

Enter the number of nodes adjacent 2: 1
Enter nodes adjacent to 2: 3

Enter the number of nodes adjacent 3: 0
Enter nodes adjacent to 3:

Output

The nodes visited from 0: 0
The nodes visited from 1: 1
The nodes visited from 2: 2

3

123
23
3

The nodes visited from 3:

Exercises

1)

2)
3)
4)
5)
6)

AT 2T
— T ET
—[3 1+

/

Adjacency linked list

Define the terms: a) vertex b) edge c¢) graph d) directed graph

e) undirected graph

Define the terms: a) self-loop (or self-edge) b) multigraph c¢) complete graph
c) length of the path

Define the terms: a) cycle (circuit) b) Connected graph c) disconnected graph
What are the different methods of representing a graph?

What is an adjacency matrix? explain with example

Define the terms: a) path b) simple path

11.28 B Graphs

7) What is an adjacency list? Explain with example

8) What is a weighted graph?

9) How the weighted graph can be represented?

10) What is cost adjacency matrix? What is cost adjacency linked list?

11) What is graph traversal? Explain different graph traversal techniques

12) What is breadth first search (BFS)?”

13) Traverse the following graph by breadth-first search and print all the vertices
reachable from start vertex a. Resolve ties by the vertex alphabetical order.

14)Write a C function to show the nodes visited using BFS traversal (adjacency matrix)

15) Write a C function to show the nodes visited using BFS traversal (adjacency list)

16) What is depth first search (DFS)?”

17) Traverse the following graph using DFS and display the nodes reachable from a given
source vertex

18) Write a program to print nodes reachable from a vertex (dfs - adjacency matrix)
19) Write a program to print nodes reachable from a vertex (dfs - adjacency matrix)

