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1. Backtracking

Some problems can be solved, by exhaustive search. The exhaustive-search technique
suggests generating all candidate solutions and then identifying the one (or the ones) with a
desired property.

Backtracking is a more intelligent variation of this approach. The principal idea is to
construct solutions one component at a time and evaluate such partially constructed
candidates as follows. If a partially constructed solution can be developed further without
violating the problem’s constraints, it is done by taking the first remaining legitimate option
for the next component. If there is no legitimate option for the next component, no
alternatives for any remaining component need to be considered. In this case, the algorithm
backtracks to replace the last component of the partially constructed solution with its next
option.

It is convenient to implement this kind of processing by constructing a tree of choices being
made, called the state-space tree. Its root represents an initial state before the search for a
solution begins. The nodes of the first level in the tree represent the choices made for the first
component of a solution; the nodes of the second level represent the choices for the second
component, and soon. A node in a state-space tree is said to be promising if it corresponds to
a partially constructed solution that may still lead to a complete solution; otherwise, it is
called non-promising. Leaves represent either non-promising dead ends or complete
solutions found by the algorithm.

In the majority of cases, a statespace tree for a backtracking algorithm is constructed in the
manner of depth-first search. If the current node is promising, its child is generated by adding
the first remaining legitimate option for the next component of a solution, and the processing
moves to this child. If the current node turns out to be non-promising, the algorithm
backtracks to the node’s parent to consider the next possible option for its last component; if
there is no such option, it backtracks one more level up the tree, and so on. Finally, if the
algorithm reaches a complete solution to the problem, it either stops (if just one solution is
required) or continues searching for other possible solutions.

1.1 General method (Textbook T2:7.1)

In many applications of the backtrack method, the desired solution is
expressible as an n-tuple (z,,...,2,), where the z; are chosen from some
finite set S;. '

Suppose m; is the size of set S;. Then there are mm = mymy---my, n-
tuples that are possible candidates for satisfying the function P. The brute
force approach would be to form all these n-tuples, evaluate each one with
P, and save those which yield the optimum. The backtrack algorithm has
as its virtue the ability to yield the same answer with far fewer than m
trials. Its basic idea is to build up the solution vector one component at a
time and to use modified criterion functions F;(x,....,x;) (sometimes called
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bounding functions) to test whether the vector being formed has any chance
of success. The major advantage of this method is this: if it is realized that
the partial vector (z,.z2,....2;) can in no way lead to an optimal solution,
then m; ;- - my possible test vectors can be ignored entirely.

Many of the problems we solve using backtracking require that all the
solutions satisfy a complex set of constraints. For any problem these con-
straints can be divided into two categories: ezplicit and implicit.

Definition 7.1 Explicit constraints are rules that restrict each z; to take
on values only from a given set. a

Common examples of explicit constraints are

z; >0 or S;
2:=10 or 1 or S;
i<z <w; or S

{all nonnegative real numbers}

{0,1}

{a:l; <a<wu}

(o

The explicit constraints depend on the particular instance I of the problem
being solved. All tuples that satisfy the explicit constraints define a possible
solution space for I.

Definition 7.2 The implicit constraints are rules that determine which of
the tuples in the solution space of I satisfy the criterion function. Thus
implicit constraints describe the way in which the z; must relate to each
other. 0

General Algorithm (Recursive)

Algorithm Backtrack(k)

// This schema describes the backtracking process using
// recursion. On entering, the first & — 1 values

// x[1],x[2],...,z[k — 1] of the solution vector

[/ z|l: ng have been assigned. z[ | and n are global.

for (each z[k] € T(z[1],...,z[k —1]) do
if (Bi(z([1],2[2],...,z[k]) # 0) then
if (z[1],z[2],...,z[k] is a path to an answer node)

then write (z[1 : k]);
if (£ < n) then Backtrack(k + 1);
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General Algorithm (Iterative)
Algorithm |Backtrack(n)
// This schema describes the backtracking process.
// All solutions are generated in z[1 : n] and printed
// as soon as they are determined.

k=12
while (k # 0) do

if (there remains an untried z[k] € T'(z[1], 2[2],.. .,
zlk —1]) and By(z[1],...,z[k]) is true) then

if (2[1],....z[k] is a path to an answer node)
then write (z[1 : k]);
¢ := k + 13 // Consider the next set.

else k := k — 1; // Backtrack to the previous set.

}
}

General Algorithm for backtracking (From textbook T1)
ALGORITHM  Backtrack(X[1..i])

//Gives a template of a generic backtracking algorithm

/Mnput: X[1..i] specifies first i promising components of a solution

//Output: All the tuples representing the problem’s solutions

if X[1..i]is a solution write X[1..i]

else /Isee Problem 9 in this section’s exercises

for each element x € ;| consistent with X[1..i] and the constraints de

X[i+1]<x
Backtrack(X[1..i +1])

1.2 N-Queens problem

The problem is to place n queens on an n x n chesshboard so that no two queens attack each
other by being in the same row or in the same column or on the same diagonal.

So let us consider the four-queens problem and solve it by the backtracking technique.
Since each of the four queens has to be placed in its own row, all we need to do is to assign a
column for each queen on the board presented in figure.

4—— queen

<+—— queen 2

1
2
3 +—— queen 3
4

+—— queend
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We start with the empty board and then place queen 1 in the first possible position of its row,
which is in column 1 of row 1. Then we place queen 2, after trying unsuccessfully columns 1
and 2, in the first acceptable position for it, which is square (2, 3), the square in row 2 and
column 3. This proves to be a dead end because there is no acceptable position for queen 3.
So, the algorithm backtracks and puts queen 2 in the next possible position at (2, 4). Then
queen 3 is placed at (3, 2), which proves to be another dead end. The algorithm then
backtracks all the way to queen 1 and moves it to (1, 2). Queen 2 then goes to (2, 4), queen 3
to(3, 1), and queen 4 to (4, 3), which is a solution to the problem. The state-space tree of this
search is shown in figure.

17— TT— 5
Q Q
Ji ~—
3 / T~—_ &
3 A 3
Q Q
T/
/ 4 7
1 2 3 4 1 3
XXXXXQ ®ox O
Q Q
Q Q
/T /|
12'\34 1 2 2
A S = X Q
Q
Q
Q

solution

Figure: State-space tree of solving the four-queens problem by backtracking. x
denotes an unsuccessful attempt to place a queen in the indicated column. The
numbers above the nodes indicate the order in which the nodes are generated.

If other solutions need to be found, the algorithm can simply resume its operations at the leaf
at which it stopped. Alternatively, we can use the board’s symmetry for this purpose.

Finally, it should be pointed out that a single solution to the n-queens problem for any n > 4
can be found in linear time.

Note: The algorithm NQueens() is not in the syllabus. It is given here for interested learners.
The algorithm is referred from textbook T2.
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Algorithm NQueens(k,n)

// Using backtracking, this procedure prints all
// possible placements of n queens on an n x n
// chessboard so that they are nonattacking.

for i := 1 to n do

{
if Place(k,7) then
zlk] = 13
if (k = n) then write (z[l : n]);
else NQueens(k + 1,n);
}
}

}

Algorithm Place(k, 1)

// Returns true if a queen can be placed in kth row and
// ith column. Otherwise it returns false. z[ | is a

// global array whose first (k — 1) values have been set.
// Abs(r) returns the absolute value of r.

for j:=1to k—1do
if ((x[j] =14) // Two in the same column
or (Abs(z[j] —i) = Abs(j — k)})
// or in the same diagonal
then return false;
return true;

1.3 Sum of subsets problem

Problem definition: Find a subset of a given set A = {a1, . . ., a} of n positive integers
whose sum is equal to a given positive integer d.

For example, for A = {1, 2, 5, 6, 8} and d = 9, there are two solutions: {1, 2, 6} and {1, 8}.
Of course, some instances of this problem may have no solutions.

It is convenient to sort the set’s elements in increasing order. So, we will assume that
< a<...<an

The state-space tree can be constructed as a binary tree like that in Figure shown below for
the instance A = {3, 5,6, 7} and d = 15.

The number inside a node is the sum of the elements already included in the subsets
represented by the node. The inequality below a leaf indicates the reason for its termination.
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with 6 w/o 6

(9
X X
9+7>15  347<15 1147>15  5+7<15

solution X
8<15

The root of the tree represents the starting point, with no decisions about the given elements
made as yet. Its left and right children represent, respectively, inclusion and exclusion of a; in
a set being sought.

Similarly, going to the left from a node of the first level corresponds to inclusion of a2 while
going to the right corresponds to its exclusion, and so on. Thus, a path from the root to a node
on the i" level of the tree indicates which of the first in numbers have been included in the
subsets represented by that node.

We record the value of s, the sum of these numbers, in the node. If s is equal to d, we have a
solution to the problem. We can either report this result and stop or, if all the solutions need
to be found, continue by backtracking to the node’s parent. If s is not equal to d, we can
terminate the node as non-promising if either of the following two inequalities holds:

s+a; 1 >d (thesum s is too large).
n
s+ Z a; <d (the sum s is too small).
J=i+1

Example: Apply backtracking to solve the following instance of the subset sum problem: A
={1,3,4,5}andd = 11.

1.4 Graph coloring

Let G be a graph and m be a given positive integer. We want to discover
whether the nodes of G can be colored in such a way that no two adjacent
nodes have the same color yet only m colors are used. This is termed the
m-colorability decision problem Note
that if d is the degree of the given graph. then it can be colored with d + 1
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colors. The m-colorability optimization problem asks for the smallest integer
m for which the graph G can be colored. This integer is referred to as the
chromatic number of the graph. For example, the graph of Figure 7.11 can
be colored with three colors 1,2, and 3. The color of each node is indicated
next to it. It can also be seen that three colors are needed to color this graph
and hence this graph’s chromatic number is 3.

— — == ,:(‘ 3

Figure 7.11 An example graph and its coloring ; ; 7

A graph is said to be planar iff it can be drawn in a plane in such a
way that no two edges cross each other. A famous special case of the m-
colorability decision problem is the 4-color problem for planar graphs. This
problem asks the following question: given any map, can the regions be
colored in such a way that no two adjacent regions have the same color
yet only four colors are needed? This turns out to be a problem for which
graphs are very useful, because a map can easily be transformed into a graph.
Each region of the map becomes a node, and if two regions are adjacent,
then the corresponding nodes are joined by an edge. Figure 7.12 shows a
map with five regions and its corresponding graph. This map requires four
colors. For many years it was known that five colors were sufficient to color
any map. but no map that required more than four colors had ever been
found. After several hundred years, this problem was solved by a group of
mathematicians with the help of a computer. They showed that in fact four
colors are sufficient. In this section we consider not only graphs that are
produced from maps but all graphs. We are interested in determining all
the different ways in which a given graph can be colored using at most m
colors.

Figure 7.12 A map and its planar graph representation

Suppose we represent a graph by its adjacency matrix G[1 : n,1 : n],
where G[i, j] = 1if (4, 7) is an edge of G, and G[i, j] = 0 otherwise. The colors
are represented by the integers 1,2, ..., m and the solutions are given by the
n-tuple (zy,....2y,), where r; is the color of node i. Using the recursive
backtracking formulation as given in Algorithm 7.1, the resulting algorithm
is mColoring (Algorithm 7.7). The underlying state space tree used is a
level n + 1 are leaf nodes. Figure 7.13 shows the state space tree when n =
3 and m = 3.
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Algorithm 7.7 Finding all m-colorings of a graph

Algorithm mColoring(k)

// This algorithm was formed using the recursive backtracking
// schema. The graph is represented by its boolean adjacency
// matrix G[1:n,1 :n]. All assignments of 1,2,....m to the
// vertices of the graph such that adjacent vertices are

// assigned distinct integers are printed. k is the index

// of the next vertex to color.

repeat
{// Generate all legal assignments for z[k].
NextValue ); // Assign to z[k] a legal color.
if (z[k] = then return; // No new color possible
if (k=n) then // At most m colors have been
// used to color the n vertices.
write (z[l : n]);
else mColoring(k + 1);
} until (false);

}

Algorithm NextValue(A)

// z[1],...,z[k — 1] have been assigned integer values in

// the range [1,m] such that adjacent vertices have distinct

// integers. A value for z[k] is determined in the range

// [0,m]. z[k] is assigned the next highest numbered color
/ while maintaining distinctness from the adjacent vertices

// of vertex k. If no such color exists, then z[k] is 0.

repeat

z[k] := (z[k] + 1) mod (m + 1); // Next highest color.

if (z[k] = 0) then return; // All colors have been used.

for 3.:=1 to n do

{ // Check if this color is
// distinct from adjacent colors.
if ((G[k, j] #0) and (x[k] = z[j]))
// If (k,7) is and edge and if ad}.
// vemcm have the same color.

then break;

if (j =n + 1) then return; // New color found
} until (false); // Otherwise try to find another color.
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Figure 7.13 State space tree for mColoring when n =3 and m = 3

Function mColoring is begun by first assigning the graph to its adja-
cency matrix, setting the array x| ] to zero, and then invoking the statement
mColoring(1);.

Function NextValue (Algo-
rithm 7.8) produces the possible colors for z;, after x; through zx_, have
been defined. The main loop of mColoring repeatedly picks an element from
the set of possibilities, assigns it to xg, and then calls mColoring recursively.
For instance, Figure 7.14 shows a simple graph containing four nodes. Below
that is the tree that is generated by mColoring. Each path to a leaf repre-
sents a coloring using at most three colors. Note that only 12 solutions exist
with exactly three colors. In this tree, after choosing z; = 2 and x5 = 1,
the possible choices for x3 are 2 and 3. After choosing #1 = 2, z2 = 1, and
x5 = 2, possible values for x4 are 1 and 3. And so on.
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Figure 7.14 A 4-node graph and all possible 3-colorings

Analysis

An upper bound on the computing time of mColoring can be arrived at by
noticing that the number of internal nodes in the state space tree is 7' m'.
At each internal node, O(mn) time is spent by NextValue to determine the
children corresponding to lega,l colorings. Hence the total time is bounded

by Sy mitln = ¥ min = n(m™! - 2)/(m - 1) = O(nm™").
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1.5 Hamiltonian cycles

Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle
(suggested by Sir William Hamilton) is a round-trip path along n edges of
GG that visits every vertex once and returns to its starting position. In other
words if a Hamiltonian cycle begins at some vertex v; € G and the vertices
of G are visited in the order vy, v9,..., vy .1, then the edges (v;, v;41) are in
E. 1 <1 < n, and the v; are distinct except for v, and v, , 1. which are equal.

The graph G1 of Figure 7.15 contains the Hamiltonian cycle 1, 2, 8, 7,
6, 5, 4, 3, 1. The graph G2 of Figure 7.15 contains no Hamiltonian cycle.
There is no known easy way to determine whether a given graph contains a
Hamiltonian cycle.

=)
=

W

\_N

y CL =| ;//" - . \/l

Figure 7.15 Two graphs, one containing a Hamiltonian cycle

We now look at a backtracking algorithm that finds all
the Hamiltonian cycles in a graph. The graph may be directed or undirected.
Only distinct cycles are output.

The backtracking solution vector (zy,...,x,) 18 defined so that =»- -
resents the ith visited vertex of the proposed cycle. Now all »-
determine how to compute the set of possible vertices ¢
have already been chosen. If £ = 1, then z; ca»’
avoid printing the same cycle n times -
then z; can be any vertex » *'
connected by an edge *
vertex and it -
ing i
vertex for the proposed cycle.

Using NextValue we can particularize the recursive backtracking schema
to find all Hamiltonian cycles . This algorithm is started
by first initializing the adjacency matrix G[1: n, 1 : n], then setting x[2 : n]
to zero and z[1] to 1, and then executing Ham:ltoman(Q)

Recall from the traveling salesperson problem which asked for
a tour that has minimum cost. This tour is a Hamiltonian cycle. For the
simple case of a graph all of whose edge costs are identical, Hamiltonian will
find a minimum-cost tour if a tour exists. If the common edge cost is ¢, the
cost of a tour is ¢n since there are n edges in a Hamiltonian cycle.

SVIT CSE
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Algorithm Hamiltonian(k)

// This algorithm uses the recursive formulation of
// backtracking to find all the Hamiltonian cycles
// of a graph. The graph is stored as an adjacency
// matrix G[1:n,1:n]. All cycles begin at node 1.

repeat
{ // Generate values for z[k].
NextValue(k); // Assign a legal next value to z[k].
if (z[k] = 0) then return;
if (k =n) then write (z[1 : n]);
else Hamiltonian(k + 1);
} until (false);

}

Algorithm NextVaIue(k)

// z[1:k —1] is a path of k — 1 distinct vertices. If x[k] = 0, then
// no vertex has as yet been assigned to z[k]. After execution,

// x[k| is assigned to the next highest numbered vertex which

// does not already appear in z[1 : k — 1] and is connected by

// an edge to x[k — 1]. Otherwise z[k] = 0. If k = n, then

// in addition z[k] is connected to z[1].

repeat

z[k] := (z[k] + 1) mod (n + 1); // Next vertex.

if (xz[k] = 0) then return;

if (G[z[k — 1], z[k]] # 0) then

/ / Is thorv an edge?
for j:=1to k — 1 do if (z[j] = z[k]) then break;
/ Check for distinctness.
if (j = k) then // If true, then the vertex is distinct.
if ((k <n) or ((k= n) and G[z[n], z[1]] # 0))
then return;

} un];.il (false);

SVIT CSE 12
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2. Branch and Bound

Recall that the central idea of backtracking, discussed in the previous section, is tocut off a
branch of the problem’s state-space tree as soon as we can deduce that it cannot lead to a
solution. This idea can be strengthened further if we deal with an optimization problem.

An optimization problem seeks to minimize or maximize some objective function (a tour
length, the value of items selected, the cost of an assignment, and the like), usually subject to
some constraints. An optimal solution is a feasible solution with the best value of the
objective function (e.g., the shortest Hamiltonian circuit or the most valuable subset of items
that fit the knapsack).

Compared to backtracking, branch-and-bound requires two additional items:

1. away to provide, for every node of a state-space tree, a bound on the best value of
the objective function on any solution that can be obtained by adding further
components to the partially constructed solution represented by the node

2. the value of the best solution seen so far

In general, we terminate a search path at the current node in a state-space tree of a branch-
and-bound algorithm for any one of the following three reasons:

1. The value of the node’s bound is not better than the value of the best solution seen so
far.

2. The node represents no feasible solutions because the constraints of the problem are
already violated.

3. The subset of feasible solutions represented by the node consists of a single point (and
hence no further choices can be made)—in this case, we compare the value of the
objective function for this feasible solution with that of the best solution seen so far
and update the latter with the former if the new solution is better.

2.1 Assignment Problem

Let us illustrate the branch-and-bound approach by applying it to the problem of assigning n
people to n jobs so that the total cost of the assignment is as small as possible.

An instance of the assignment problem is specified by an n x n cost matrix C so that we can
state the problem as follows: select one element in each row of the matrix so that no two
selected elements are in the same column and their sum is the smallest possible. We will
demonstrate how this problem can be solved using the branch-and-bound technique by
considering the small instance of the problem. Consider the data given below.

jobl job2 job3 job4

9 2 7 8 person a

6 4 3 7 person b
c=| . : . ,

5 8 1 3 person ¢

7 6 9 B person d

SVIT CSE 13



18

21CS42 DAA M5-NOTES

How can we find a lower bound on the cost of an optimal selection without actually solving
the problem?

We can do this by several methods. For example, it is clear that the cost of any solution,
including an optimal one, cannot be smaller than the sum of the smallest elements in each
of the matrix’s rows. For the instance here, this sum is 2 + 3+ 1+ 4 = 10.We can and will
apply the same thinking to partially constructed solutions. For example, for any legitimate
selection that selects 9 from the first row, the lower bound will be 9 + 3 + 1+ 4 = 17.

Rather than generating a single child of the last promising node as we did in backtracking, we
will generate all the children of the most promising node among non-terminated leaves in the
current tree. (Non terminated, i.e., still promising, leaves are also called live.) How can we
tell which of the nodes is most promising? We can do this by comparing the lower bounds of
the live nodes. It is sensible to consider a node with the best bound as most promising,
although this does not, of course, preclude the possibility that an optimal solution will
ultimately belong to a different branch of the state-space tree. This variation of the strategy is
called the best-first branch-and-bound.

We start with the root that corresponds to no elements selected from the cost matrix. The
lower-bound value for the root, denoted Ib, is 10. The nodes on the first level of the tree
correspond to selections of an element in the first row of the matrix, i.e., a job for person a.
See the figure given below.
0
stat |
Ib=2+3+1+4=10|

///'/ / \‘\\\
e oz \\“-—
//"’ \ \\
K

i e 2/ \ 3 s 4
a—- 1 a— 2 a—3 ‘ a—4
b=9+3+1+4=17| [b=2+3+1+4=10| [b=7+4+5+4 =20 ]/b=8+3+1+6=18

Figure: Levels 0 and 1 of the state-space tree for the instance of the assignment
problem being solved with the best-first branch-and-bound algorithm. The number
above a node shows the order in which the node was generated. A node’s fields
indicate the job number assigned to person a and the lower bound value, Ib, for this
node.

So we have four live leaves—nodes 1 through 4—that may contain an optimal solution. The
most promising of them is node 2 because it has the smallest lower bound value. Following
our best-first search strategy, we branch out from that node first by considering the three
different ways of selecting an element from the second row and not in the second column -
the three different jobs that can be assigned to person b. See the figure given below (Fig
12.7).
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Of the six live leaves—nodes 1, 3, 4, 5, 6, and 7—that may contain an optimal solution, we
again choose the one with the smallest lower bound, node 5. First, we consider selecting the
third column’s element from ¢’s row (i.e., assigning person c to job 3); this leaves us with no
choice but to select the element from the fourth column of d’s row (assigning person d to job
4). This yields leaf 8 (Figure 12.7), which corresponds to the feasible solution {a—2, b—1,
c—3, d —4} with the total cost of 13. Its sibling, node 9, corresponds to the feasible solution
{a—2,b—1, c—4, d —3} with the total cost of 25. Since its cost is larger than the cost of the
solution represented by leaf 8, node 9 is simply terminated. (Of course, if its cost were
smaller than 13, we would have to replace the information about the best solution seen so far
with the data provided by this node.)

0
start
Ib=10 .
s
_ / \““-—-»\\____-\-_

1 it 2 e
a—1 a— 2 a—>3 a— 4
b=17 Ib=10 Ib=20 Ib=18

X X X

5 6 7
b — 1 b— 3 b - 4
Ib=13 b=14 Ib=17
X X
8 9
c— 3 c — 4
d — 4 d - 3
cost=13 cost = 25
solution inferior solution

FIGURE 12.7 Complete state-space tree for the instance of the assignment problem
solved with the best-first branch-and-bound algorithm.

Now, as we inspect each of the live leaves of the last state-space tree—nodesl, 3, 4, 6, and 7
in Figure 12.7—we discover that their lower-bound values are not smaller than 13, the value
of the best selection seen so far (leaf 8). Hence, we terminate all of them and recognize the
solution represented by leaf 8 as the optimal solution to the problem.

2.2 Travelling Sales Person problem

We will be able to apply the branch-and-bound technique to instances of the traveling
salesman problem if we come up with a reasonable lower bound on tour lengths. One very
simple lower bound can be obtained by finding the smallest element in the intercity distance
matrix D and multiplying it by the number of cities n.
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But there is a less obvious and more informative lower bound for instances with symmetric
matrix D, which does not require a lot of work to compute. We can compute a lower bound
on the length | of any tour as follows. For each city i, 1< i <n, find the sum s; of the distances
from city i to the two nearest cities; compute the sums of these n numbers, divide the result
by 2, and, if all the distances are integers, round up the result to the nearest integer:

Ib = [s/2]... (1)

For example, for the instance in Figure 2.2a, formula (1) yields
b=[[14+3)+C+6)+1+2)+C+4+ 2+ 3)]/2]=14.

Moreover, for any subset of tours that must include particular edges of a given graph, we can
modify lower bound (formula 1) accordingly. For example, for all the Hamiltonian circuits of
the graph in Figure 2.2a that must include edge (a, d), we get the following lower bound by
summing up the lengths of the two shortest edges incident with each of the vertices, with the
required inclusion of edges (a, d)and (d, a):
MA+5)+G3+6)+1+2)+G+5)+2+3)]/2]=16.

We now apply the branch-and-bound algorithm, with the bounding function given by
formula-1, to find the shortest Hamiltonian circuit for the graph in Figure 2.2a.

To reduce the amount of potential work, we take advantage of two observations.

1. First, without loss of generality, we can consider only tours that start at a.
2. Second, because our graph is undirected, we can generate only tours in which b is
visited before c. (Refer Note at the end of section 2.2 for more details)

In addition, after visiting n—1= 4 cities, a tour has no choice but to visit the remaining
unvisited city and return to the starting one. The state-space tree tracing the algorithm’s
application is given in Figure 2.2b.

Note: An inspection of graph with 4 nodes (figure given below) reveals three pairs of tours
that differ only by their direction. Hence, we could cut the number of vertex permutations by
half. We could, for example, choose any two intermediate vertices, say, b and c, and then
consider only permutations in which b precedes c. (This trick implicitly defines a tour’s
direction.)

{’;\. 2 v )\‘/D M Length
\/\ p SRS
/// 3 —> b —> Cc—>¢ j | =2+8+1+7=18
/‘ a—>b—->d—>¢c—>a [ =2+3+14+5=11 optima!
5 . . a->¢c—>b->d->a | =54+84+3+7=23
j/ "3 d=->C—>0—>0—>4d [=54+14+3+2=11 optima
/_/ \ 3= —s B —sa l:=743%8+5=23
L ‘73{‘ ‘y@' d=>0d=>Cc=>b-—>a [=74+14+8+2=18

— 1

Figure: Solution to a small instance of the traveling salesman problem by exhaustive search.
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Figure 2.2(a)Weighted graph. (b) State-space tree of the branch-and-bound algorithm to find
a shortest Hamiltonian circuit in this graph. The list of vertices in a node specifies a
beginning part of the Hamiltonian circuits represented by the node.

Discussion

The strengths and weaknesses of backtracking are applicable to branch-and-bound as well.
The state-space tree technique enables us to solve many large instances of difficult
combinatorial problems. As a rule, however, it is virtually impossible to predict which
instances will be solvable in a realistic amount of time and which will not.

In contrast to backtracking, solving a problem by branch-and-bound has both the challenge
and opportunity of choosing the order of node generation and finding a good bounding
function. Though the best-first rule we used above is a sensible approach, it may or may not
lead to a solution faster than other strategies. (Artificial intelligence researchers are
particularly interested in different strategies for developing state-space trees.)

Finding a good bounding function is usually not a simple task. On the one hand, we want this
function to be easy to compute. On the other hand, it cannot be too simplistic - otherwise, it
would fail in its principal task to prune as many branches of a state-space tree as soon as
possible. Striking a proper balance between these two competing requirements may require
intensive experimentation with a wide variety of instances of the problem in question.
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3. 0/1 Knapsack problem

Note: For this topic as per the syllabus both textbooks T1 & T2 are suggested.
Here we discuss the concepts from T1 first and then that of from T2.

Topic form T1 (Levitin)

Let us now discuss how we can apply the branch-and-bound technique to solving the
knapsack problem. Given n items of known weights wiand values vi, i=1,2,...,n,and a
knapsack of capacity W, find the most valuable subset of the items that fit in the knapsack.

DSwxis<Wad ) xi is maximized, wherex; =0or1

1<i<n 1<i<n
It is convenient to order the items of a given instance in descending order by their value-to-
weight ratios.

vy/wy = vmfun = >0,/ w,

Each node on the i level of state space tree, 0 < i < n, represents all the subsets of n items
that include a particular selection made from the first i ordered items. This particular
selection is uniquely determined by the path from the root to the node: a branch going to the
left indicates the inclusion of the next item, and a branch going to the right indicates its
exclusion.

We record the total weight w and the total value v of this selection in the node, along with
some upper bound ub on the value of any subset that can be obtained by adding zero or more
items to this selection. A simple way to compute the upper bound ub is to add to v, the total
value of the items already selected, the product of the remaining capacity of the knapsack W
—w and the best per unit payoff among the remaining items, which is vi+1/wis1:

ub = v + (W — w)(Vi+1/Wi+1).

Example: Consider the following problem. The items are already ordered in descending order
of their value-to-weight ratios.

& g value
item  weight value -
: weight
I 4 $40 10
2 7 $42 6 The knapsack’s capacity W is 10.
3 5 $25 5
- 3 $12 -

Let us apply the branch-and-bound algorithm. At the root of the state-space tree (see Figure
12.8), no items have been selected as yet. Hence, both the total weight of the items already
selected w and their total value v are equal to 0. The value of the upper bound is 100.

Node 1, the left child of the root, represents the subsets that include item 1. The total weight
and value of the items already included are 4 and 40, respectively; the value of the upper
bound is 40 + (10 —4) * 6 = 76.
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Node 2 represents the subsets that do not include item 1. Accordingly, w =0, v =0, and ub =
0+ (10 — 0) * 6 = 60. Since node 1 has a larger upper bound than the upper bound of node 2,
it is more promising for this maximization problem, and we branch from node 1 first. Its
children—nodes 3 and 4—represent subsets with item 1 and with and without item 2,
respectively. Since the total weight w of every subset represented by node 3 exceeds the
knapsack’s capacity, node 3 can be terminated immediately.

Node 4 has the same values of w and v as its parent; the upper bound ub is equal to 40 + (10
—4) * 5 ="170. Selecting node 4 over node 2 for the next branching (Due to better ub), we get
nodes 5 and 6 by respectively including and excluding item 3. The total weights and values as
well as the upper bounds for these nodes are computed in the same way as for the preceding
nodes.

Branching from node 5 yields node 7, which represents no feasible solutions, and node 8,
which represents just a single subset {1, 3} of value 65. The remaining live nodes 2 and 6
have smaller upper-bound values than the value of the solution represented by node 8. Hence,
both can be terminated making the subset {1, 3} of node 8 the optimal solution to the
problem.

0
w=0v=0
ub =100
with1 _— TT— W01
'\\‘\\‘
1 ////’ \’\\ 2
w=4,v=40 w=0v=0
ub=76 ub =60
with 2 w/o 2 X
inferior to
4 node 8
w=11 w=4,v=40
ub=70
not fexasible Wi Vs
5 6
w=9, v==65 w=4, v=40
ub =69 ub==64
X
with 4 / w/o 4 inferior to node 8
7 .8
w=12 w=9, v=65
value = 65
X
not feasible optimal solution

FIGURE 12.8 State-space tree of the best-first branch-and-bound algorithm for the
instance of the knapsack problem.
Solving the knapsack problem by a branch-and-bound algorithm has a rather unusual
characteristic. Typically, internal nodes of a state-space tree do not define a point of the
problem’s search space, because some of the solution’s components remain undefined. (See,
for example, the branch-and-bound tree for the assignment problem discussed in the
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preceding subsection.) For the knapsack problem, however, every node of the tree represents
a subset of the items given. We can use this fact to update the information about the best
subset seen so far after generating each new node in the tree. If we had done this for the
instance investigated above, we could have terminated nodes 2 and 6 before node 8 was
generated because they both are inferior to the subset of value 65 of node 5.

Concepts form textbook T2 (Horowitz)

Let us understand some of the terminologies used in backtracking &branch and bound.

— Live node - a node which has been generated and all of whose children are not yet been
generated.

— E-node - is a live node whose children are currently being explored. In other words, an E-
node is a node currently being expanded.

— Dead node - a node that is either not to be expanded further, or for which all of its
children have been generated

— Bounding Function - will be used to kill live nodes without generating all their children.
— Backtracking - is depth first node generation with bounding functions.
— Branch-And-Bound is a method in which E-node remains E-node until it is dead.

— Breadth-First-Search: Branch-and Bound with each new node placed in a queue. The
front of the queen becomes the new E-node.

— Depth-Search (D-Search): New nodes are placed in to a stack. The last node added is the
first to be explored.

The search for an answer node can often be speeded by using an “in-
telligent” ranking function é(-) for live nodes. The next E-node is selected
on the basis of this ranking function. b

The ideal way to assign ranks would be on the basis of the additional
computational effort (or cost) needed to reach an answer node from the live
node. :

Let g(x) be an estimate of the additional effort needed to reach an answer
node from z. Node z is assigned a rank using a function ¢(-) such that
c(x) = f(h(z)) + g(z), where h(x) is the cost of reaching = from the root
and f(-) is any nondecreasing function. _ )

By using f(-) # 0, we can force the search algorithm to favor
a node z close to the root over a node w which is many levels below z. This
would reduce the possibility of deep and fruitless searches into the tree.

A search strategy that uses a cost function é(z) = f(h(z))+g(z) to select
the next E-node would always choose for its next E-node a live node with
least ¢(-). Hence, such a search strategy is called an LC-search (Least Cost
search). It is interesting to note that BFS and D-search are special cases
of LC-scarch. If we use g(z) = 0 and f(h(z)) = level of node z, then a
LC-search generates nodes by levels. This is essentially the same as a BFS.
If f(h(z)) =0 and g(z) > ¢(y) whenever y is a child of z, then the search
is essentially a D-search. An LC-search coupled with bounding functions is
called an LC branch-and-bound search.
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0/1 Knapsack problem - Branch and Bound based solution
As the technique discussed here is applicable for minimization problems, let us convert the
knapsack problem (maximizing the profit) into minimization problem by negating the
objective function
n
minimize — Z PiT;
i=1 m—=0Dorl, 1<i<n
Fvery leaf node in the state space tree representing an assign-
ment for which 3, ., ., w;z; < m is an answer (or solution) node. All other
leaf nodes are infeasible. For a minimum-cost answer node to correspond
to any optimal solution, we need to define ¢(z) = — 3, ,, piz; for every
answer node x. The cost ¢(z) = oo for infeasible leaf nodes. For nonleaf
nodes, c(x) is recursively defined to be min {e(lchild(z)), c(rehild(z))}.

We now need two functions ¢(z) and u{x) such that é(z) < ¢(z) < u(z)
for every node z. The cost ¢(-) and u(-) satisfying this requirement may be
obtained as follows. Let z be a node at level j, 1 < 5 < n+ 1. At node =
assignments have already been made to z;, 1 <4 < j. The cost of these as-
signments is — -1 <;<; PiTi- S0, ¢(z) < =30 <y piri and we may use u(z) =
— Yi<icy PiTi- g = — 3714, piz;, then an improved upper bound function
u(z) is u(z) = UBound(q, f1<z’<j w;x;, J — 1,m), where UBound is defined in
Algorithm 8.2. -

Algorithm 8.2 Function u(-) for knapsack problem

Algorithm UBound(cp, cw, k,m)
// ¢p is the current profit total, cw is the current
// weight total; & is the index of the last removed
// item; and m is the knapsack size.

w(i] and pli] are respectively
// the weight and profit of the ith object.

b:=cp; ¢ := cwy
for i:=k+1tondo

if (¢ + wli] <m) then

ci=c+ wzi]; b:=b- 77{'5];

}

return b;
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3.1 LC (Least Cost) Branch and Bound solution

To use LCBB to solve the knapsack problem, we need to specify (1) the
structure of nodes in the state space tree being searched, (2) how to generate
the children of a given node, (3) how to recognize a solution node, and (4)
a representation of the list of live nodes and a mechanism for adding a node
into the list as well as identifying the least-cost node. The node structure
needed depends on which of the two formulations for the state space tree is
being used. Let us continue with a fixed size tuple formulation. Each node
x that is gencrated and put onto the list ot live nodes must have a parent
field. In addition, as noted in Example 8.2, each node should have a one bit
tag field. This field is needed to output the z; values corresponding to an
optimal solution. To generate z's children, we need to know the level of node
x in the state space tree. For this we shall use a field level. The left child of
r is chosen by setting z.,.(,) = 1 and the right child by setting zje.0q2) = 0.

To determine the feasibility of the left child, we need to know the amount
of knapsack space available at node z. This can be determined either by
following the path from node x to the root or by explicitly retaining this
value in the node. Say we choose to retain this value in a field cu (capacity
unused). The evaluation of é(z) and u(x) requires knowledge of the profit
21 <i<level(x) Pitti €arned by the filling corresponding to node z. This can be
computed by following the path from x to the root. Alternatively, this value

can be explicitly retained in a field pe. Finally, in order to determine the live
node with least ¢ value or to insert nodes properly into the list of live nodes,
we need to know é(z). Again, we have a choice. The value ¢(x) may be
stored explicitly in a field ub or may be computed when needed. Assuming
all information is kept explicitly, we need nodes with six fields each: parent,
level, tay, cu, pe, and ub.

Using this six-field node structure, the children of any live node z can be
easily determined. The left child y is feasible iff cu(r) > wieper(r)- In this
case, parent(y) = z, level(y) = level(z) + 1, cu(y) = cu(x) — Wiepei(ry, Pe(y)
= pe(T) + Plevetirys tag{y) = 1, and ub(y) = ub(z). The right child can be
generated similarly. Solution nodes are easily recognized too. Node x is a
solution node iff level(z) = n+ 1.

We are now left with the task of specifying the representation of the list
of live nodes. The functions we wish to perform on this list are (1) test if
the list is empty, (2) add nodes. and (3) delete a node with least ub. We
have seen a data structure that allows us to perform these three functions
efficiently: a min-heap. If there are m live nodes, then function (1) can be
carried out in ©(1) time, whereas functions (2) and (3) require only O(log m)
time.
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Example 8.2 [LCBB] Consider the knapsack instance n = 4, (p1, p2, p3, p4)
= (10, 10, 12, 18), (wi, w2, w3, wy) = (2, 4, 6. 9), and m = 15. Let us trace
the working of an LC branch-and-bound search using ¢(-) and u(-) as defined
previously. We continue to use the fixed tuple size formulation. The search
begins with the root as the E-node. For this node, node 1 of Figure 8.8, we
have ¢(1) = —38 and «(1) = —32.

— =38
\/=32
™
~38 4 > ~32
32/ /=27
AN
»
y 2\ 3
-38 < =36
-32\/ =22
AN 5
/ N
-38 < . -38
32\ /=38
6 e /\;\
g Ry 20
38/ K 20
8 9

Upper number = ¢
Lower number = u

Figure 8.8 LC branch-and-bound tree for Example 8.2

The computation of u(1) and ¢(1) is done as follows. The bound u(1) has a
value UBound(0), 0,0, 15). UBound scans through the objects from left to right
starting from j: it adds these objects into the knapsack until the first object
that doesn’t fit is encountered. At this time, the negation of the total profit
of all the objects in the knapsack plus cw is returned. In Function UBound,
¢ and b start with a value of zero. For i = 1,2, and 3, ¢ gets incremented
by 2,4, and 6, respectively. The variable b also gets decremented by 10, 10,
and 12, respectively. When ¢ = 4, the test (¢ + wi] < m) fails and hence
the value returned is —32. Function Bound is similar to UBound, except that
it also considers a fraction of the first object that doesn’t fit the knapsack.
For example, in computing ¢(1), the first object that doesn’t fit is 4 whose
weight is 9. The total weight of the objects 1. 2, and 3 is 12. So, Bound
considers a fraction % of the object 4 and hence returns —32 — 3 % 18 = —38.

Since node 1 is not a solution node, LCBB sets ans = 0 and upper = —32
(ans being a variable to store intermediate answer nodes). The E-node is
expanded and its two children, nodes 2 and 3, generated. The cost ¢(2) =
—38, é(3) = —32, u(2) = —32, and u(3) = —27. Both nodes are put onto
the list of live nodes. Node 2 is the next E-node. It is expanded and nodes
4 and 5 generated. Both nodes get added to the list of live nodes. Node
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4 is the live node with least é value and becomes the next E-node. Nodes
6 and 7 are generated. Assuming node 6 is generated first, it is added to
the list of live nodes. Next, node 7 joins this list and upper is updated to

—38. The next E-node will be one of nodes 6 and 7. Let us assume it is
node 7. Its two children are nodes 8 and 9. Node 8 is a solution node.
Then upper is updated to —38 and node 8 is put onto the live nodes list.
Node 9 has ¢(9) > wupper and is killed immediately. Nodes 6 and 8 are
two live nodes with least ¢. Regardless of which becomes the next E-node,
¢(F) > upper and the search terminates with node 8 the answer node. At
this time, the value —38 together with the path 8, 7, 4, 2, 1 is printed out
and the algorithm terminates. From the path one cannot figure out the
assignment of values to the z;’s such that ) p;z; = upper. Hence, a proper
implementation of LCBB has to keep additional information from which the
values of the z;’s can be extracted. One way is to associate with each node a
one bit field, tag. The sequence of tag bits from the answer node to the root
give the x; values. Thus, we have tag(2) = fag(4) = tag(6) = tag(8) =1
and tag(3) = tag(5) = tag(7) = tag(9) = 0. The tag sequence for the path
8,7,4,2,11s101landsozs=1,23=0,z0=1, and ;) = 1. O

3.2 FIFO Branch and Bound solution

. ) In branch-and-
bound terminology, a BFS-like state space search will be called FIFO (First
In First Out) search as the list of live nodes is a first-in-first-out list (or
queue).

Example 8.3 Now, let us trace through the FIFOBB algorithm using the
same knapsack instance as in Example 8.2. Initially the root node, node 1
of Figure 8.9, is the F-node and the queue of live nodes is empty. Since this
is not a solution node, upper is initialized to u(1) = —32.

We assume the children of a node are generated left to right. Nodes 2
and 3 are generated and added to the queue (in that order). The value of
upper remains unchanged. Node 2 becomes the next E-node. Its children,
nodes 4 and 5, are generated and added to the queue. Node 3, the next

E-node, is expanded. Its children nodes are generated. Node 6 gets added
to the queue. Node 7 is immediately killed as ¢(7) > upper. Node 4 is
expanded next. Nodes 8 and 9 are generated and added to the queue. Then
upper is updated to «(9) = —38. Nodes 5 and 6 are the next two nodes
to become E-nodes. Neither is expanded as for each, é() > upper. Node 8

is the next F-node. Nodes 10 and 11 are generated. Node 10 is infeasible
and so killed. Node 11 has ¢(11) > upper and so is also killed. Node 9 is

expanded next. When node 12 is generated, upper and ans are updated to
—38 and 12 respectively. Node 12 joins the queue of live nodes. Node 13
is killed before it can get onto the queue of live nodes as é(13) > upper.
The only remaining live node is node 12. It has no children and the search
terminates. The value of upper and the path from node 12 to the root is
output. As in the case of Example 8.2, additional information is needed to
determine the z; values on this path. a
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-38 ,< =38

=32 —38
-38 =20
-33 =20

13

upper number = ¢
lower number = u

Figure 8.9 FIFO branch-and-bound tree for Example 8.3

Conclusion

At first we may be tempted to discard FIFOBB in favor of LCBB in
solving knapsack. Our intuition leads us to believe that LCBB will examine
fewer nodes in its quest for an optimal solution. However, we should keep in
mind that insertions into and deletions form a heap are far more expensive
(proportional to the logarithm of the heap size) than the corresponding
operations on a queue (©(1)). Consequently, the work done for each E-
node is more in LCBB than in FIFOBB. Unless LCBB uses far fewer E-nodes
than FIFOBB, FIFOBB will outperform (in terms of real computation time)
LCBB.
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4. NP-Complete and NP-Hard problems

4.1 Basic concepts

For many of the problems we know and study, the best algorithms for their solution have
computing times can be clustered into two groups;

1. Solutions are bounded by the polynomial- Examples include Binary search O(log n),
Linear search O(n), sorting algorithms like merge sort O(n log n), Bubble sort O(n?)
&matrix multiplication O(n®) or in general O(n¥) where k is a constant.

2. Solutions are bounded by a non-polynomial-Examples include travelling salesman
problem O(n*2") & knapsack problem 0(2"). As the time increases exponentially,
even moderate size problems cannot be solved.

So far, no one has been able to device an algorithm which is bounded by the polynomial for
the problems belonging to the non-polynomial. However impossibility of such an algorithm
is not proved.

4.2 Non deterministic algorithms

We also need the idea of two models of computer (Turing machine): deterministic and non-
deterministic. A deterministic computer is the regular computer we always thinking of; a non-
deterministic computer is one that is just like we’re used to except that is has unlimited
parallelism, so that any time you come to a branch, you spawn a new “process” and examine
both sides.

When the result of every operation is uniquely defined then it is called deterministic
algorithm.

When the outcome is not uniquely defined but is limited to a specific set of possibilities, we
call it non deterministic algorithm.

We use new statements to specify such non deterministic algorithms.

e choice(S) - arbitrarily choose one of the elements of set S
o failure - signals an unsuccessful completion
e success - signals a successful completion

The assignment X = choice(1:n) could result in X being assigned any value from the integer
range[1..n]. There is no rule specifying how this value is chosen.

“The nondeterministic algorithms terminates unsuccessfully iff there is no set of choices
which leads to the successful signal”.

Example-1: Searching an element x in a given set of elements A(1:n). We are required to
determine an index j such that A(j) = x or j = 0 if x is not present.

J :=choice(1:n)

if A(j) = x then print(j); success endif
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print(‘0”); failure
Example-2: Checking whether n integers are sorted or not

procedure NSORT(A,n);

/[sort n positive integers//
var integer A(n), B(n), n, i, j;
begin
B :=0; //B is initialized to zero//
fori:=1tondo
begin
j :=choice(1:n);
if B(j) <> 0 then failure;
B() := AG);

end;

for i :=1to n-1 do //verify order//
if B(i) > B(i+1) then failure;
print(B);
success;
end.

“A nondeterministic machine does not make any copies of an algorithm every time a choice
is to be made. Instead it has the ability to correctly choose an element from the given set”.

A deterministic interpretation of the nondeterministic algorithm can be done by making
unbounded parallelism in the computation. Each time a choice is to be made, the algorithm
makes several copies of itself, one copy is made for each of the possible choices.

Decision vs Optimization algorithms
An optimization problem tries to find an optimal solution.
A decision problem tries to answer a yes/no question. Most of the problems can be specified
in decision and optimization versions.
For example, Traveling salesman problem can be stated as two ways
e Optimization - find hamiltonian cycle of minimum weight,
e Decision - is there a hamiltonian cycle of weight < k?
For graph coloring problem,
e Optimization — find the minimum number of colors needed to color the vertices of a
graph so that no two adjacent vertices are colored the same color
e Decision - whether there exists such a coloring of the graph’s vertices with no more
than m colors?

Many optimization problems can be recast in to decision problems with the property that the
decision algorithm can be solved in polynomial time if and only if the corresponding
optimization problem.
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4.3 P, NP, NP-Complete and NP-Hard classes

NP stands for Non-deterministic Polynomial time.

Definition: P is a set of all decision problems solvable by a deterministic algorithm in
polynomial time.

Definition: NP is the set of all decision problems solvable by a nondeterministic algorithm in
polynomial time. This also implies P € NP

Problems known to be in P are trivially in NP — the nondeterministic machine just never
troubles itself to fork another process, and acts just like a deterministic one. One example of a
problem not in P but in NP is Integer Factorization.

But there are some problems which are known to be in NP but don’t know if they’re in P. The
traditional example is the decision-problem version of the Travelling Salesman Problem
(decision-TSP). It’s not known whether decision-TSP is in P: there’s no known poly-time

solution, but there’s no proof such a solution doesn’t exist.

There are problems that are known to be neither in P nor NP; a simple example is to
enumerate all the bit vectors of length n. No matter what, that takes 2" steps.

Now, one more concept: given decision problems P and Q, if an algorithm can transform a
solution for P into a solution for Q in polynomial time, it’s said that Q is poly-time
reducible (or just reducible) to P.

The most famous unsolved problem in computer science is “whether P=NP or PZNP? ”

Figure: Commonly believed AP

relationship between P and NP Ap-complete

I'
{ AP-hard

Figure: Commonly believed relationship between P, NP, NP-
Complete and NP-hard problems

Definition: A decision problem D is said to be NP-complete if:
1. it belongs to class NP
2. every problem in NP is polynomially reducible to D

The fact that closely related decision problems are polynomially reducible to each other is not
very surprising. For example, Hamiltonian circuit problem is polynomially reducible to the
decision version of the traveling salesman problem.
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NP-Complete problems have the property that it can be solved in polynomial time if all other
NP-Complete problems can be solved in polynomial time. i.e if anyone ever finds a poly-time
solution to one NP-complete problem, they’ve automatically got one for all the NP-complete
problems; that will also mean that P=NP.

Example for NP-complete is CNF-satisfiability problem. The CNF-satisfiability problem
deals with boolean expressions. This is given by Cook in 1971. The CNF-satisfiability
problem asks whether or not one can assign values true and false to variables of a given
boolean expression in its CNF form to make the entire expression true.

Over the years many problems in NP have been proved to be in P (like Primality Testing).
Still, there are many problems in NP not proved to be in P. i.e. the question still remains
whether P=NP? NP Complete Problems helps in solving this question. They are a subset
of NP problems with the property that all other NP problems can be reduced to any of them in
polynomial time. So, they are the hardest problems in NP, in terms of running time. If it can
be showed that any NP-Complete problem is in P, then all problems in NP will be in P
(because of NP-Complete definition), and hence P=NP=NPC.

NP Hard Problems - These problems need not have any bound on their running time. If
any NP-Complete Problem is polynomial time reducible to a problem X, that problem X
belongs to NP-Hard class. Hence, all NP-Complete problems are also NP-Hard. In other
words if a NP-Hard problem is non-deterministic polynomial time solvable, it is a NP-
Complete problem. Example of a NP problem that is not NPC is Halting Problem.

If a NP-Hard problem can be solved in polynomial time then all NP-Complete can be solved
in polynomial time.

“All NP-Complete problems are NP-Hard but not all NP-Hard problems are not NP-
Complete.”NP-Complete problems are subclass of NP-Hard

The more conventional optimization version of Traveling Salesman Problem for finding the
shortest route is NP-hard, not strictly NP-complete.
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