Fundamentals
of Logic

In the first chapter we derived a summation formula in Example 1.40 (Section 1.4). We
obtained this formula by counting the same collection of objects (the statements that were
executed in a certain program segment) in two different ways and then equating the results.
Consequently, we say that the formula was established by a combinatorial proof. This is
one of many different techniques for arriving at a proof.

In this chapter we take a close look at what constitutes a valid argument and a more
conventional proot. When a mathematician wishes to provide a proof for a given situation,
he or she must use a system of logic. This is also true when a computer scientist develops
the algorithms needed for a program or system of programs. The logic of mathematics is
applied to decide whether one statement follows from, or is a logical consequence of, one
or more other statements,

Some of the rules that govern this process are described in this chapter. We shall use these
rules in proofs (provided in the text and required in the exercises) throughout subsequent
chapters, However, at no time can we hope to arrive at a point at which we can apply the
rules in an automatic fashion. As in applying the counting ideas discussed in Chapter 1,
we should always analyze and seek to understand the situation given. This often calls for
attributes we cannot learn in a book, such as insight and creativity. Merely trying to apply
formulas or invoke rules will not get us very far either in proving results (such as theorems)
or in doing enumeration problems.

2.1
Basic Connectives and Truth Tables

In the development of any mathematical theory, assertions are made in the form of sen-
tences. Such verbal or written assertions, called starements (or propositions), are declarative
sentences that are either true or false — but nor both. For example, the following are state-
ments, and we use the lowercase letters of the alphabet (such as p, g, and r) to represent
these statements.

o Combinatorics is a required course for sophomores,

gq: Margaret Mitchell wrote Gone with the Wind.

r: 2+3=3.
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On the other hand, we do not regard sentences such as the exclamation

113

“What a beautiful evening!
or the command
*Get up and do your exercises.”

as statements since they do not have frurh values (true or false).

The preceding statements represented by the letters p, g, and r are considered to be
primitive statements, for there is really no way to break them down into anything simpler.
New statements can be obtained from existing ones in two ways.

1} Transform a given statement p into the statement —p, which denotes its negation and
is read “Not p."”
For the statement p above, —p 1s the statement “Combinatorics is not a required
course for sophomores.” (We do not consider the negation of a primitive statement
to be a primitive statement.)

2) Combine two or more statements into a compound statement, using the following
logical connectives.

a) Conjunction: The confunction of the statements p, g is denoted by p ~ g. which
isread “p and ¢." In our example the compound statement p ~ g is read “Combi-
natorics is a required course for sophomores, and Margaret Mitchell wrote Gone
with the Wind.”

b} Disjunction: The expression p v g denotes the disjunction of the statements p, g
and is read “p or g." Hence “Combinatorics is a required course for sophomores,
or Margaret Mitchell wrote Gone with the Wind™ is the verbal translation for
p v g, when p, g are as above, We use the word “or™ in the inclusive sense here,
Consequently, p v g is true if one or the other of p, g is true or if both of the
staterments p, g are true. In English we sometimes write “and/or" to point this out.
The exclusive “or” is denoted by p ¥ g, The compound statement p ¥ g is true if
one or the other of p, g is true but nor both of the statements p, g are true. One
way to express p ¥ g for the example here is “Combinatorics is a required course
for sophomores, or Margaret Mitchell wrote Gone with the Wind, but not both,™

¢) Implication: We say that* p implies g"" and write p — g to designate the statement,
which is the implication of g by p. Alternatively, we can also say

(i) “If p, then g.” (i} “p is sufficient for g.”
(i) “p is a sufficient condition for g.” (iv) “g is necessary for p.”
(¥) “g is a necessary condition for p.” (vi) “ponlyifg.”

A verbal translation of p — g for our example is “If combinatorics is a required
course for sophomores, then Margaret Mitchell wrote Gone with the Wind." The
statement p is called the hypothesis of the implication; g is called the conclu-
sion. When statements are combined in this manner, there need not be any causal
relationship between the statements for the implication to be true.

d) Biconditional: Last, the biconditional of two statements p, g, is denoted by p < g,
which is read “p if and only if g,” or “p is necessary and sufficient for g.” For
our p, g, “Combinatorics is a required course for sophomores it and only if
Margaret Mitchell wrote Gone with the Wind™ conveys the meaning of p < ¢.
We sometimes abbreviate “p if and only if " as “p iff g.”

Throughout our discussion on logic we must realize that a sentence such as

“The number x is an integer.”
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1% nor a statement because its truth value (true or false) cannot be determined until a nu-
merical value is assigned for x. If x were assigned the value 7, the result would be a true
statement. Assigning x a value such as %. V2, or r, however, would make the resulting
statement false. (We shall encounter this type of situation again in Sections 2.4 and 2.5 of
this chapter.)

In the foregoing discussion, we mentioned the circumstances under which the compound
statements p v g, p ¥ g are considered true, on the basis of the truth of their components
P, g. This idea of the truth or falsity of a compound statement being dependent only on the
truth values of its components is worth further investigation. Tables 2.1 and 2.2 summarize
the truth and falsity of the negation and the different kinds of compound statements on the
basis of the truth values of their components. In constructing such truth tables, we write
*0" for false and “1" for true.

Table 2.1 Table 2.2
2| =P Plq|prag | pve | pYg | p—~q | peg
0 | 0|0 0 0 0 1 1
1 0 0|1 0 | 1 1 0
110 0 1 1 0 0
| | | | 0 1 1

The four possible truth assignments for p, ¢ can be listed in any order. For later work,
the particular order presented here will prove useful,

We see that the columns of truth values for p and = p are the opposite of each other. The
statement p A g 1s true only when both p, g are true, whereas p ' g is false only when both
the component statements p, g are false. As we noted before, p ¥ g is true when exactly
one of p, g is true.

For the implication p — g, the result is true in all cases except where p is true and g
is false. We do not want a true statement to lead us into believing something that is false.
However, we regard as true a statement such as “If 2 + 3 = 6, then 2 + 4 = 7, even though
the statements “2 + 3 = 6" and “2 + 4 = 7" are both false.

Finally, the biconditional p < g is true when the statements p, ¢ have the same truth
value and is false otherwise.

Now that we have been introduced to certain concepts, let us investigate a little further
some of these initial ideas about connectives. Our first two examples should prove useful
for such an investigation.

Let s, f, and u denote the following primitive statements:
s Phyllis goes out for a walk.
r: The moon is out.
u: It is snowing.

The following English sentences provide possible translations for the given (symbolic)
compound statements,

a) (t » —u) — s: If the moon is out and it is not snowing, then Phyllis goes out for a
walk.
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b) t — (—u — 5): If the moon is out, then if it is not snowing Phyllis goes out for a
walk. [So =i — s is understood to mean (—u) — 5 as opposed to —(u — 5).]

¢) =(s <> (1 v 1)): It is not the case that Phyllis goes out for a walk if and only if it is
snowing or the moon is out.

Now we will work in reverse order and examine the logical (or symbolic) notation for
three given English sentences:

d) “Phyllis will go out walking if and only if the moon is out.” Here the words “if
and only if” indicate that we are dealing with a biconditional. In symbolic form this
becomes s +» 1.

e) “If it is snowing and the moon is not out, then Phyllis will not go out for a walk.”
This compound statement is an implication where the hypothesis is also a compound
statement. One may express this statement in symbolic form as (i A —f) = —s,

f) “It is snowing but Phyllis will still go out for a walk.,” Now we come across a new
connective — namely, but. In our study of logic we shall follow the convention that
the connectives bur and and convey the same meaning. Consequently, this sentence
may be represented as u A s.

Now let us return to the results in Table 2.2, particularly the sixth column. For if this is
one’s first encounter with the truth table for the implication p — g, then it may be somewhat
difficult to accept the stated entries — especially the results in the first two rows {where p has
the truth value (). The following example should help make these truth value assignments
easier to grasp.

Consider the following scenario, It is almost the week before Christmas and Penny will be
attending several parties that week. Ever conscious of her weight, she plans not to weigh
herself until the day after Christmas. Considering what those parties may do to her waistline
by then, she makes the following resolution for the December 26 outcome: “If I weigh more
than 120 pounds, then I shall enroll in an exercise class.”

Here we let p and g denote the (primitive) statements

EXAMPLE 2.2

p:  1weigh more than 120 pounds.
g: Ishall enroll in an exercise class,

Then Penny's statement {implication) is given by p — g.
We shall consider the truth values of this particular example of p — g for the rows of
Table 2.2, Consider first the easier cases in rows 4 and 3.

* Row 4: p and g both have the truth value 1. On December 26 Penny finds that she
weighs more than 120 pounds and promptly enrolls in an exercise class, just as she said
she would, Here we consider p — ¢ to be true and assign it the truth value 1.

® Row 3: p has the truth value 1, ¢ has the truth value 0. Now that December 26 has
arrived, Penny finds her weight to be over 120 pounds, but she makes no attempt to enroll
in an exercise class. In this case we feel that Penny has broken her resolution — in other
words, the implication p — g is false (and has the truth value 0).

The cases in rows | and 2 may not immediately agree with our intuition, but the example
should make these results a little easier to accept.
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® Row |: p and g both have the truth value 0. Here Penny finds that on December 26
her weight is 120 pounds or less and she does not enroll in an exercise class. She has not
violated her resolution; we take her statement p — g to be true and assign it the truth
value 1.

* Row 2: p has the truth value (), ¢ has the truth value 1. This last case finds Penny
weighing 120 pounds or less on December 26 but still enrolling in an exercise class.
Perhaps her weight is 119 or 120 pounds and she feels this is still too high, Or maybe
she wants to join an exercise class because she thinks it will be good for her health. No
matter what the reason, she has not gone against her resolution p — ¢. Once again, we
accept this compound statement as true, assigning it the truth value 1.

Our next example discusses a related notion: the decision (or selection) structure in
computer programming.

In computer science the if-then and if-then-else decision structures arise (in various for-
mats) in high-level programming languages such as Java and C++. The hypothesis p is often
a relational expression such as x = 2. This expression then becomes a (logical) statement
that has the truth value 0 or 1, depending on the value of the variable x at that point in
the program. The conclusion g is usually an “executable statement.” (So g is not one of
the logical statements that we have been discussing.) When dealing with “if p then g,” in
this context, the computer executes g only on the condition that p is true. For p false, the
computer goes to the next instruction in the program sequence. For the decision structure
“if p then g else r,” g is executed when p is true and r is executed when p is false.

Before continuing, a word of caution: Be careful when using the symbols — and <+ . The
implication and the biconditional are not the same, as evidenced by the last two columns
of Table 2.2.

In our everyday language, however, we often find situations where an implication is used
when the intention actually calls for a biconditional. For example, consider the following
implications that a certain parent might direct to his or her child.

s — 1 If you do your homework, then you will get to watch the baseball game.

t — 5:  You will get to watch the baseball game only if you do your homework.

® Case |: The implication s — t. When the parent says to the child, “If you do your
homework, then you will get to watch the baseball game,” he or she is trying a positive
approach by emphasizing the enjoyment in watching the baseball game.

® (Case 2: The implication r — s. Here we find the negative approach and the parent who
warns the child in saying, “You will get to watch the baseball game only it you do your
homework.” This parent places the emphasis on the punishment (lack of enjoyment) to
be incurred.

In either case, the parent probably wants his or her implication —beits — tort — 5 —
to be understood as the biconditional 5 <+ 1. For in case 1 the parent wants to hint at the
punishment while promising the enjoyment; in case 2, where the punishment has been
used (perhaps, to threaten), if the child does in fact do the homework, then that child will
definitely be given the opportunity to enjoy watching the baseball game.
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EXAMPLE 2.4

EXAMPLE 2.5

In scientific writing one must make every effort to be unambiguous — when an im-
plication is given, it ordinarily cannot, and should not, be interpreted as a biconditional.
Definitions are a notable exception, which we shall discuss in Section 2.5,

Before we continue let us take a step back. When we summarized the material that
gave us Tables 2.1 and 2.2, we may not have stressed enough that the results were for any
statements p, g — not just primitive statements p, g. Examples 2.4 through 2.6 should help
to reinforce this.

Let us examine the truth table for the compound statement “Margaret Mitchell wrote Gone
with the Wind, and if 2 + 3 # 5, then combinatorics is a required course for sophomores.”
In symbolic notation this statement is written as g ~ (—r — p), where p, g, and r represent
the primitive statements introduced at the start of this section. The last column of Table 2.3
contains the truth values for this result. We obtained these truth values by using the fact
that the conjunction of any two statements is true if and only if both statements are true.
This is what we said earlier in Table 2.2, and now one of our statements — namely, the
implication =r — p—is definitely a compound statement, not a primitive one. Columns
4, 5, and 6 in this table show how we build the truth table up by considering smaller parts
of the compound statement and by using the results from Tables 2.1 and 2.2.

Table 2.3
Plg|r|=r|=r=p|gAal-r=p)
0001 0 0
0l0|1f 0 1 0
150 0 O O 0 0
oj1|1]| 0O 1 1
1{ojo} 1 1 0
1{o]1] o0 1 0
1|1]0] 1 1 |
R 1 1

In Table 2.4 we develop the truth tables for the compound statements p v (g A r) (col-
umn 5) and {p v g) A r (column 7).

Table 2.4
Plaglrlgar | pvigar) | pvg |(pvglar
o100 0 0 0 0
0j0|1 0 0 0 0
O|110 0 0 1 0
oj11]1 1 1 1 1
11010 0 1 | 0
11011 0 | 1 1
| 110 0 1 1 0
1111 1 1 1 1
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Because the truth values in columns 5 and 7 differ {in rows 5 and 7), we must avoid
writing a compound statement such as p v g A r. Without parentheses to indicate which of
the connectives v and A should be applied first, we have no idea whether we are dealing
with pv g Ar)oripyvg)Ar

Our last example for this section illustrates two special types of statements.

The results in columns 4 and 7 of Table 2.5 reveal that the statement p — (p v g is true and
that the statement p A (—p A g) is false for all truth value assignments for the component
statements p, g.

Table 2.5
plag|pvg | p=ipvg) | -p | —-prag | pril-prg)
010 0 1 1 0 0
011 I 1 1 1 0
1|0 1 1 0 0 0
1)1 | | 0 0 0

A compound statement is called a taurology if it is true for all truth value assignments for
its component statements. If a compound statement is false for all such assignments, then
it is called a contradiction.

Throughout this chapter we shall use the symbol T; to denote any tautology and the
symbol Fy to denote any contradiction.

We can use the ideas of tautology and implication to describe what we mean by a valid
argument. This will be of primary interest to us in Section 2.3, and 1t will help us develop
needed skills for proving mathematical theorems. In general, an argument starts with a list
of given statements called premises and a statement called the conclusion of the argument.
We examine these premises, say py, p2, M1, . . ., Pq. and try to show that the conclusion
g follows logically from these given statements — that is, we try to show that it each of
P1. P2y P3, - -+ Py I8 atrue statement, then the statement g is also true. To do so one way
is to examine the implication

(mAp2ApIA - Ap)t =g,

where the hypothesis is the conjunction of the # premises. Ifany oneof py, p2. pa. ..., puis
false, then no matter what truth value g has, the implication (py A o A ps A - - A py) = g
is true. Consequently, if we start with the premises py, p2, p3. ..., p, —each with truth

value | — and find that under these circumstances g also has the value 1, then the implication
(AP APIA- APy =g

is a rautology and we have a valid argument,

At this point we have dealt only with the conjunction of two statements, so we must point out that the
conjunction gy A pa A ps Ac-- - A pg o o statements is true if and only if each pi, 1 =1 < n, is true. We shall
deal with this generalized conjunction in detail in Example 4.16 of Section 4.2,
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EXERCISES 2.1

1. Determine whether each of the following sentences is a
slatement.

a) In 2003 George W, Bush was the president of the United
States.

b) x + 3 is a positive integer.

¢) Fifteen is an even number.

d) If Jennifer is late for the party, then her cousin Zachary
will be quite angry,

€) What time is it?

)} As of June 30, 2003, Christine Marie Evert had won the
French Open a record seven times.

2, ldentify the primitive statements in Exercise 1.

3. Let p, g be primitive statements for which the implication
P — g is false. Determine the truth values for each of the fol-
lowing,

a) pAg by =pvg elg—=p d)—g—=-p

4. Let p, g, r, 5 denote the following statements:

p:  finish writing my computer program before lunch.
g: 1shall play tennis in the afternoon.
r:  The sun is shining.
51 The humidity is low.
Write the following in symbolic form.

a) If the sun is shining, I shall play tennis this afternoon,
b} Finishing the writing of my computer program before
lunch is necessary for my playing tennis this afternoon.

¢} Low humidity and sunshine are sufficient for me to play
tennis this afternoon.

5. Let p, g, r denote the following statements about a partic-
ular triangle ABC,

p: Triangle ABC is isosceles.
g: Trangle ABC is equilateral.
ri Trangle ABC is equiangular.

Translate each of the following into an English sentence.

a)g—p b) =p— —g
c) g +r d) p =g
e} r—p

6. Determine the truth value of each of the following impli-
cations.

a)If3i+4=12,then3+2 =6
b) f3+3=6,then3+4=9

¢} If Thomas Jefferson was the third president of the United
States, then 2 4+ 3 = 5.

7. Rewrite each of the following statements as an implication
in the if-then form.

a) Practicing her serve daily is a sufficient condition for
Darci to have a good chance of winning the tennis tourna-
ment.

b) Fix my air conditioner or [ won't pay the rent.

¢) Mary will be allowed on Larry's motoreyele only if she
wears her helmet.

8. Construct a truth table for each of the following compound
statements, where p, g, r denote primitive statements.

b) p—ig—r)
d) (p—>g)—=(g—p)
£) (prgl—=p

a) ~ipV —-g)— —p
) ip—=qgl—r
e [prlp—=q)l—gq
B) g« (=p v —g)
h [(p—=g)rlg—=r)]l=(p—r)
9. Which of the compound statements in Exercise 8 are

tautologies?

10 Verify that [p—= (g —=r)l—=[lp—=gl—=i{p—r)]lisa

tautology.

11. a) How many rows arc necded for the truth table of the
compound statement (p v —g) < [(—r A 5) = 1], where
P, F. 5, and ¢ are primitive statements?

b) Let py, P2, - . -, P denote n primitive statements. Let
p be a compound staternent that contains at least one oc-
currence each of p,, for 1 =i <n—and p contains no
other primitive statement. How many rows are needed to
construct the truth table for p?

12. Determine all truth value assignments, if any, for the prim-
itive statements p, g, r, 5, t that make each of the following
compound statements false.

a) [(parg)ar]—=(3vi
b) [paigar)]—(s¥t)
13. If statement g has the truth value 1, determine all truth value

assignments for the primitive statements, p, r, and 5 for which
the truth value of the statement

(g = [(=pvr)a=s])al-s— (—r Agll
is1.

14, At the start of a program (written in pseudocode) the inte-
ger variable n is assigned the value 7. Determine the value of
n after each of the following successive statements is encoun-
tered during the execution of this program. [Here the value of
n following the execution of the statement in part (a) becomes
the value of n for the statement in part (b), and so on, through
the statement in part (d), For positive integers a, b, |a/k| re-
turns the integer part of the quotient — for example, |6/2] = 3,
|7/2] =3, |2/5] =0, and |8/3] = 2.]

a) ifn=5thenn :=n+ 2



b)if ((n+2=8)er (n-3=6)) then
n:=2*n+1

c}) if ({n- 3 =16) and {|n/6] = 1)) then
n:=n+3

d) if ((n£21) and (n- 7=15)) then
n:=n-=4

15. The integer variables m and n are assigned the values 3
and &, respectively, during the execution of a program (written
in pseudocode). Each of the following swccessive statements is
then encountered during program execution. [Here the values
of m, n following the execution of the statement in part (a) be-
come the values of m, n for the statement in part (b), and so on,
through the statement in part (e).] What are the values of m, n
after each of these statements is encountered?

a) if n-m=5thenn :=n- 2
b) if ((2*m=n) and (|n/4] = 1)) then
n:=4*m-3
c) 1f ((n<8) or (m/2]=2)) thenn
elgem:=2*n
d) if (im<20) and {[n/6] =1}) then
m:=mMm=-n-5

e) if ((n=2*m) or (R/2] =5)) then
m:=m+ 2

=2 % m

16. In the following program segment i, ., m, and n are integer
variables. The values of m and »n are supplied by the user earlier
in the execution of the total program.

2.2
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for i :=1tomdo
for 7 :=1toendo

if 1 £ 7 then

print i+ J

How many times is the print statement in the segment exe-
cuted when(@a)m = 10, n=10; (b)m =20, n=20;: (chm =
10, n =20 (dym = 20, n = 107

17. After baking a pie for the two nieces and two nephews who
are visiting her, Aunt Nellic leaves the pie on her kitchen ta-
ble to cool. Then she drives to the mall to close her boutique
for the day. Upon her return she finds that someone has eaten
one-quarter of the pie. Since no one was in her house that day —
excepl for the four visitors — Aunt Nellie questions each niece
and nephew about who ate the piece of pie. The four “suspects™
tell her the following:

Charles:  Kelly ate the piece of pie.

Dawn: I did not eat the piece of pie.

Kelly: Tyler ate the pie.

Tyler: Kelly lied when she said I ate the pie.

If only one of these four statements is true and only one of
the four committed this heinous crime, who is the vile culprit
that Aunt Nellie will have to punish severely?

EXAMPLE 2.7

In all areas of mathematics we need to know when the entities we are studying are equal or
essentially the same. For example, in arithmetic and algebra we know that two nonzero real
numbers are equal when they have the same magnitude and algebraic sign. Hence, for two
nonzero real numbers x, y, we have x = y if |x| = |y| and xy = 0, and conversely (that is,
if x = y, then |x| = |¥| and xy = 0). When we deal with triangles in geometry, the notion
of congruence arises. Here triangle A BC and triangle D E F are congruent if, for instance,
they have equal corresponding sides — that is, the length of side AB = the length of side
DE, the length of side BC = the length of side £ F, and the length of side C A = the length
of side FD.

Our study of logic is often referred to as the algebra of propesitions (as opposed to the
algebra of real numbers). In this algebra we shall use the truth tables of the statements,
or propositions, to develop an idea of when two such entities are essentially the same. We
begin with an example.

For primitive statements p and g, Table 2.6 provides the truth tables for the compound
statements —p v g and p — g. Here we see that the corresponding truth tables for the two
statements —p v g and p — g are exactly the same.
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Definition 2.2

Table 2.6

Plg|=pP|-PVY | P—+1q

—_—
— T
O
— S
—

This situation leads us to the following idea.

Two statements s;, 52 are said to be logically equivalent, and we write 51 <= 5;, when the
statement s, is true (respectively, false) if and only if the statement s; is true (respectively,
false).

Note that when s, <= s5; the statements s, and 5; provide the same truth tables because
51, 52 have the same truth values for all choices of truth values for their primitive compo-
nents.

As aresult of this concept we see that we can express the connective for the implication (of
primitive statements) in terms of negation and disjunction —that is, (p — g) <= —-p Vv g.
In the same manner, from the result in Table 2.7 we have (p <= g) & (p —= g) A (g = p),
and this helps validate the use of the term biconditional. Using the logical equivalence from
Table 2.6, we find that we can also write (p <> g) < (—p v g) A (—g v p). Consequently,
if we so choose, we can eliminate the connectives — and +» from compound statements.

Table 2.7
Plag|p—=gqg|gq—=p|lp=glralg—=p) | peyg
0|0 1 1 1 1
0|1 1 0 0 0
110 0 1 0 0
111 1 | 1 1

Examining Table 2.8, we find that negation, along with the connectives ~ and v, are all
we need to replace the exclusive or connective, ¥, In fact, we may even eliminate either
or v. However, for the related applications we want to study later in the text, we shall need
both ~ and v as well as negation.

Table 2.8
pla|pY¥g|pveg | pag | =lpag) | (pvea=iprg)
0|0 0 0 0 1 0
0l1 1 1 0 1 1
1(0 ] 1 0 1 1
1|51 0 1 | 1 0 0
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We now use the idea of logical equivalence to examine some of the important properties
that hold for the algebra of propositions.

For all real numbers a, b, we know that —(a 4+ b) = (—a) + (—b). Is there a comparable
result for primitive statements p, g7

In Table 2.9 we have constructed the truth tables for the statements —(p A g), =p v =g,
=(pgq), and —=p A —g, where p, g are primitive statements. Columns 4 and 7 reveal
that —=(p A g) < —=p v —g; columns 9 and 10 reveal that —(p v g) < —=p A —g. These
results are known as DeMeorgan s Laws. They are similar to the familiar law for real numbers,

—la+b)=(—a)+ (—=b),

already noted, which shows the negative of a sum to be equal to the sum of the nega-
tives. Here, however, a crucial difference emerges: The negation of the conjunction of two
primitive statements p, g results in the disjunction of their negations —p, =g, whereas
the negation of the disjuncrion of these same statements p, g 1s logically equivalent to the
conjunction of their negations —p, —g.

Table 2.9
Plg|prag | =lpag)| —p "41"PV"9‘ pPYg | =lpvg) | =pr=yq
010 0 1 1 1 ! 1 0 1 1
o1 0 1 1 0 1 1 0 0
1|0 0 1 0 1 1 1 0 0
11 1 0 0 0 0 1 0 ]

Although p, g were primitive statements in the preceding example we shall soon learn
that DeMorgan’s Laws hold for any two arbitrary statements.

In the arithmetic of real numbers, the operations of addition and multiplication are both
involved in the principle called the Distributive Law of Multiplication over Addition: For
all real numbers a, b, ¢,

aXb+c)=(axXb)+axec)

The next example shows that there is a similar law for primitive statements. There is also
a second related law (for primitive statements) that has no counterpart in the arithmetic of
real numbers.

Table 2.10 contains the truth tables for the statements p A (g v r), (pag) v (par),
pyig ar), and (p v g) A (pwr). From the table it follows that for all primitive state-
ments p, g, and r,

pAalgvrysS(pag)vipar) The Distributive Law of ~ over v
pvilgar)si(pvglaipvr) The Distributive Law of v over A

The second distributive law has no counterpart in the arithmetic of real numbers. That
is, it is not true for all real numbers a, b, and ¢ that the following holds: a 4+ (b X ¢) =
la+b)yx{a+c) For a=2, b=3, and ¢ =3, for instance, a + (b ¥ c) = 17 but
(a+b) X (a+c)=235
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Table 2.10
Plg|r|palgvr) | (pagdvipar) | pvigar) | (pvglaipvr)
o|l0]|o0 0 0 0 0
a(0|1 0 0 0 [i]
O1110 1] 0 0 0
0l1]1 0 0 1 1
1|00 0 0 1 |
11011 1 1 1 1
1|1]0 1 1 1 1
| L 1 1 1 1

Before going any further, we note that, in general, if 5,, 5; are statements and 5, < 52
is a tautology, then 51, 52 must have the same corresponding truth values (that is, for each
assignment of truth values to the primitive statements in 5, and 52, 5; is true if and only
if 57 is true and s, is false if and only if 5, is false) and 5, <= 5;. When 5, and 5, are
logically equivalent statements (that is, 5, <= 52), then the compound statement 5, <+ 53 is
a tautology. Under these circumstances it is also true that —s) <= —s2, and —s5; < —s; is
a tautology.

If 5y, 52, and s5 are statements where 5, < 53 and 52 < 55 then 5, < 53, When two
statements 5, and s, are not logically equivalent, we may write §; <% 5; to designate this
situation.

Using the concepts of logical equivalence, tautology, and contradiction, we state the
following list of laws for the algebra of propositions.

The Laws of Logic

For any primitive statements p, g, r, any tautology Ty, and any contradiction Fy,

1) ~—=pesp " Law of Double Negation

2) ~(pVgq)&>—pA-g DeMorgan’s Laws
~(pAg) &= —pV g _

3) pvgsgqvp Commautative Laws
PAG=gAp )

) pvigvrespvgvr © Associative Laws

phrlgarye(prginr
S5) pvigary<=(pvg)a(pvr)  Distributive Laws

pAl@gvrIe(pAgV(pAT) _

6) pvpesp ' Idempotent Laws
PAp&s=p

NepvEF<ep Identity Laws
pATas=p :

"We note that because of the Associative Laws, there is no ambiguity in statements of the form p v g v ror
PG AR
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8) pv-pe=Ty Inverse Laws
pA—p= Ry

9 pvhe=Th Domination Laws
prlhe=F

10) pviprg)e=p Absorption Laws
pA(pvq)=p

We now turn our attention to proving all of these properties. In so doing we realize that
we could simply construct the truth tables and compare the results for the corresponding
truth values in each case — as we did in Examples 2.8 and 2.9. However, before we start
writing, let us take one more look at this list of 19 laws, which, aside from the Law of
Double Negation, fall naturally into pairs. This pairing idea will help us after we examine
the following concept.

Let s be a statement. If 5 contains no logical connectives other than ~ and v, then the dual
of 5, denoted 5, is the statement obtained from 5 by replacing each occurrence of A and v
by v and ~, respectively, and each occurrence of Ty and Fy by Fy and Ty, respectively.

If p is any primitive statement, then p? is the same as p — that is, the dual of a primitive
statement is simply the same primitive statement. And (—p)? is the same as —p. The
statements p v —p and p A —p are duals of each other whenever p is primitive —and so
are the statements p v Ty and p ~ Fy.

Given the primitive statements p, g, r and the compound statement

52 Apa-=g)viraTy,

we find that the dual of 5 is

57 (pv—g)alry ﬁ.),

(Note that —g is unchanged as we go from s to s9.)
We now state and use a theorem without proving it. However, in Chapter 15 we shall
justify the result that appears here.

THEOREM 2.1

The Principle of Duality. Let s and t be statements that contain no logical connectives other
than A and v. If 5 <= 1, then s¢ < 9.

As a result, laws 2 through 10 in our list can be established by proving one of the laws
in each pair and then invoking this principle.

We also find that it is possible to derive many other logical equivalences. For example,
if g, r, s are primitive statements, the results in columns 5 and 7 of Table 2.11 show us that
(ras)—=g=-lras)vyg

or that [(r A 5) — g] <= [=(r ~ 5) v g] is a tautology. However, instead of always con-
structing more (and, unfortunately, larger) truth tables it might be a good idea to recall from
Example 2.7 that for primitive statements p, g. the compound statement

(p—=g)e (mpvag)
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EXAMPLE 2.10

Table 2.11
g|r|s|ras | rasi=g | =lras) | =lrasivyg
0100 0 | 1 1
0|01 0 1 1 1
01110 0 | 1 1
a11]1 1 0 0 0
11010 0 1 1 1
1|01 0 | 1 1
1|10 0 1 1 1
1{1j1 1 1 0 1

is a tautology. If we were to replace each occurrence of this primitive statement p by the
compound statement r A 5, then we would obtain the earlier tautology

[(r As)— g] & [—(r As) v gl
What has happened here illustrates the first of the following two substitution rules:

1) Suppose that the compound statement P is a tautology. If p is a primirive statement
that appears in P and we replace each occurrence of p by the same statement g, then
the resulting compound statement Py is also a tautology.

2) Let P be a compound statement where p is an arbitrary statement that appears in
P, and let g be a statement such that g <= p. Suppose that in P we replace one or
more occurrences of p by ¢. Then this replacement vields the compound statement
P, . Under these circumstances Py <= P,

These rules are further illustrated in the following two examples.
a) From the first of DeMorgan’s Laws we know that for all primitive statements p, g,
the compound statement
P: —(pvgq)<(—pA—g)

is a tautology. When we replace each occurrence of p by r ~ 5, it follows from the
first substitution rule that

Pi: =firas)wvgl < [=(r As) A g

is also a tautology. Extending this result one step further, we may replace each occur-
rence of ¢ by 1 — wu. The same substitution rule now yields the tautology

Py Slir as) v (t = w)] = [=(r Acs) A =00 — u)],
and hence, by the remarks following shortly after Example 2.9, the logical equivalence
iy A 8) v (F = u)] = [—(r As) A= — u).

b) For primitive statements p, g, we learn from the last column of Table 2.12 that the
compound statement [p A (p — g)] — g is atautology. Consequently, if r, 5, t, u are
any statements, then by the first substitution rule we obtain the new tautology

[(r = &) A [(r = 5) = (=1 v )] = (= v 1)

when we replace each occurrence of p by r — s and each occurrence of g by —¢ v u.
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Table 2.12
Pla|p—=q | prlp—=q) |lprlp—qll—g
00 1 0 1
01 1 0 1
10 0 0 1
1|1 1 1 1
EXAMPLE 2.11 a) Foranapplication of the second substitution rule, let P denote the compound statement

(p — q) — r.Because (p — g) <= —p v g (asshown in Example 2.7 and Table 2.6),
if Py denotes the compound statement (—p Vv g) — r, then P} <= P. (We also find
that [{p — g) — r] < [(—p v g) — r] is a tautology.)

b) Now let P represent the compound statement (actually a tautology) p — (p v gq).
Since ——p < p, the compound statement Py: p — (——p v gq) is derived from P
by replacing enly the second occurrence (but nor the first occurrence) of p by ——p.
The second substitution rule still implies that P, <= P. [Note that P;: ——p —
(—==p v g), derived by replacing both occurrences of p by —=—p, is also logically
equivalent to P.]

Our next example demonstrates how we can use the idea of logical equivalence together
with the laws of logic and the substitution rules,

EXAMPLE 2.12 Negate and simplify the compound statement (p v g) — r.

We organize our explanation as follows:
1) (pvg)—r < —(pvg)vr|bythe first substitution rule because
(& — t) <+ (—s v 1) is a tautology for primitive statements s, ¢].
2) Negating the statements in step (1), we have =[{p v g) = r] = =[—-(p v g) v r]
3) From the first of DeMorgan's Laws and the first substitution rule,
—[=(pvg)vr]le ——(pvg)Ar-r
4) The Law of Double Negation and the second substitution rule now gives us
—=(p Vgl Ao S (pvg) AT

From steps (1) through (4) we have —[(p v g) = r] < (p v g) A —r.

When we wanted to write the negation of an implication, as in Example 2.12, we found
that the concept of logical equivalence played a key role — in conjunction with the laws of
logic and the substitution rules. This idea is important enough to warrant a second look,

EXAMPLE 2.13 Let p, g denote the primitive statements

p: Joan goes to Lake George. g: Mary pays for Joan's shopping spree.
and consider the implication

p—g: If Joan goes to Lake George, then Mary will pay for Joan's shopping spree.
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EXAMPLE 2.14

EXAMPLE 2.15

Here we want to write the negation of p — g in a way other than simply —=(p — g). We
want to avoid writing the negation as “It is not the case that if Joan goes to Lake George,
then Mary will pay for Joan's shopping spree.”

To accomplish this we consider the following. Since p — g <= —p v g, it follows that
=(p — g) <= —{—p v gq). Thenby DeMorgan’s Law wehave =(—p v g) &= ——p A g,
and from the Law of Double Negation and the second substitution rule it follows that
——p A =g < p A g, Consequently,

and we may write the negation of p — g in this case as

=i{p—+ g): Joan goes to Lake George, but Mary does not
pay for Joan’s shopping spree.

(Note: The negation of an if-then statement does not begin with the word if. It is nor another
implication.)

In Definition 2.3 the dual 5 of a statement s was defined only for statements involving
negation and the basic connectives » and v, How does one determine the dual of a statement
such as s: p — g, where p, g are primitive?

Because (p — q) < —p v g, 57 is logically equivalent to the statement (—p v g)°,
whichis =p A g.

The implication p — g and certain statements related to it are now examined in the
following example.

Table 2.13 gives the truth tables for the statements p — g, —g — —p, ¢ — p, and
—p — —g. The third and fourth columns of the table reveal that

(p—g) < (=g — —p).

Table 2.13
Pl g | PpP—=q | ™g=+=p | g=p | —~p——q
00 1 1 1 1
0]1 | 1 0 0
1{0 0 0 1 1
11 1 1 1 1

The statement =g — —p is called the contrapositive of the implication p — g. Columns
5 and 6 of the table show that

(g = p)=(—-p—+—q)

The statement g — p is called the converse of p — g; —p — =g is called the inverse of
P — g. We also see from Table 2.13 that

(p=q)e>g—p) and (—p — —g) & (—g = —p).

Consequently, we must keep the implication and its converse straight. The fact that a certain
implication p — ¢ is true (in particular, as in row 2 of the table) does not require that the
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converse g — p also be true. However, it does necessitate the truth of the contrapositive
=g = [,
Let us consider a specific example where p, g represent the statements

p: et is concerned about his cholesterol (HDL and LDL) levels.
g: Jeff walks at least two miles three times a week.

Then we obtain

® (The implication: p — g). If Jeff is concerned about his cholesterol levels, then he
will walk at least two miles three times a week.

® (The contrapositive: =g — =p). If Jeff does not walk at least two miles three times a
week, then he is not concerned about his cholesterol levels.

® (The converse: g — p). If Jeff walks at least two miles three times a week, then he is
concerned about his cholesterol levels.

® (The inverse: —p — —gq). If Jeff is not concerned about his cholesterol levels, then he
will not walk at least two miles three times a week.

If p is true and g is false, then the implication p — g and the contrapositive =g — —p
are false, while the converse ¢ — p and the inverse —p — —g are true. For the case where
p 1s false and g is true, the implication p — ¢ and the contrapositive =g — —p are now
true, while the converse ¢ — p and the inverse —p — —g are false. When p, g are both true
or both false, then the implication is true, as are the contrapositive, converse, and inverse.

We turn now to two examples involving the simplification of compound statements. For
simplicity, we shall list the major laws of logic being used, but we shall not mention any
applications of our two substitution rules.

For primitive statements p, g, is there any simpler way to express the compound statement
(pwvg)as—(=p s g)—thatis, can we find a simpler statement that is logically equivalent
to the one given?

Here one finds that

(pvgla—l{—pag) Reasons
= (pvg)a(—-—pv—g) DeMorgan’s Law
= ipvg)alpv—g) Law of Double Negation
= (pvigr—gq) Distributive Law of v over »
= pv Fy Inverse Law
= p Identity Law

Consequently, we see that
(pVvg)A—(mpig)=p,

50 we can express the given compound statement by the simpler logically equivalent state-
ment p.

EXAMPLE 2.17

Consider the compound statement

=[=lpvaglar]v—gl
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EXAMPLE 2.18

where p, g, r are primitive statements. This statement contains four occurrences of primitive
statements, three negation symbols, and three connectives.
From the laws of logic it follows that

Reasons

DeMorgan’s Law

Law of Double Negation

Associative Law of A,

Commutative Law of ~

Associative Law of

Absorption Law (as well as the
Commutative Laws for ~ and )

=[=[{pvg) ar]lv gl
& llpvglaria-——g
= [(pvgiarlag
=(pvg)alrag)
= (pVvglalghr)
=pvglrglnar
=g Aar

Consequently, the original statement
—[=llp v gy anrlv —q]
is logically equivalent to the much simpler statement
g Ar,

where we find only two primitive statements, no negation symbols, and only one connective,
Note further that from Example 2.7 we have

-llipvg) arl— —gl <= --l(pva)ar]v—gl,
s0 it follows that

-[lpvgiar]——gls=gnr

We close this section with an application on how the ideas in Examples 2.16 and 2.17 can
be used in simplifying switching networks.

A switching network is made up of wires and switches connecting two terminals 77 and
T3. In such a network, each switch is either open ({1}, so that no current flows through it, or
closed (1), so that current does flow through it.

In Fig. 2.1{a) we have a network with one switch. Each of parts (b) and (c) contains two
(independent) switches.

p
. p . — _— ——p—Gg—=
T T T 5 1 T;

q
ia) (b} (ch _t

Figure 2.1

For the network in part (b), current flows from T, to T3 if either of the switches p, g is
closed. We call this a parallel network and represent it by p v g. The network in part (c)
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requires that each of the switches p, g be closed in order for current to flow from T to Tz,
Here the switches are in series; this network is represented by p ~ g.

The switches in a network need not act independently of each other. Consider the network
shown in Fig. 2.2(a). Here the switches labeled ¢ and —t are not independent. We have
coupled these two switches so that 7 is open (closed) if and only if —¢ is simultaneously
closed (open). The same is true for the switches at g, —g. (Also, for example, the three

switches labeled p are not independent.)

|
P P P P
L q f =1 ——T -— —®
T T T ' T
r = = {] r —
(@) (b) =
Figure 2.2

This network is represented by the statement

(pvgvrinlpveiv=gia{pv=tvr)
= pvilgvraltv-=g)a(-tvri]

S pvilgvryal(=tvr)yaltv—q)l
> pvillga=t)vr)altv-q)]

= pvillga=t)vr)a(=—tv—g)]

s pviliga-tyvrya—(=t Angql]

S pvi-(-tag)A((-tAg)vr)]

S pVvi=(-tagia(=taglv (=t ag)rr)]
S pVIFR V(- (~tAg)Aar)]

= pVi(=(—-rrgharl

= pVrA=(=t g
= pVira(v-g)]

(pvgvrIa(pvitv—g)A
{(p v —t v r). Using the laws of logic, we may simplify this statement as follows.

Reasons

Distributive Law of v
over A

Commutative Law of A

Distributive Law of v
OVer A

Law of Double Negation

DeMorgan’s Law

Commutative Law of A
(twice)

Distributive Law of A
over v

=g A § = Fy, forany
statement 5

Fy is the identity for v

Commutative Law of A

DeMorgan's Law and
the Law of Double
Negation

Hence (pvgwvria(pvitv—gla(pv-tvr)<s pv[raltyv—g)l and the net-
work shown in Fig. 2.2(b) is equivalent to the original network in the sense that current
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flows from T to T; in network (a) exactly when it does so in network (b). But network (b)
has only four switches, five fewer than network (a).

EXERCISES 2.2

1. Let p, g, r denote primitive statements.

a) Use truth tables to verify the following logical equiva-
lences.
i) p=a(grriespagialp—r)
i) [(pvg)=>rle=llp—orialg—r))
i) [p—(gvr)e[-r—=(p—=q)

b} Use the substitution rules to show that
[p=igvr<[(pa—g)—r]
2. Verify the first Absorption Law by means of a truth table.

3. Use the substitution rules to verify that each of the follow-
ing is a tautology. (Here p, g, and r are primitive statements.)

a) [pvigar))v=lpvigar)l
b} [(pvg)—r]+[-r——(pvgll
4. For primitive statements p, g, r, and s, simplify the com-
pound statement
(lip A g) arlvipag)a-r]l]v—g]—s.
5. Megate and express each of the following statements in
smooth English.

a) Kelsey will get a good education if she puts her studies
before her interest in cheerleading.

b) Norma is doing her homework, and Karen is practicing
her piano lessons,

¢) If Harold passes his C++ course and finishes his data
structures project, then he will graduate at the end of the
sEmester.

6. Negate each of the following and simplify the resulting
statement.

a) palgvriai—pv—gvr)
b) (pAg)—r
e} p—> (=g Ar)
d) pvgv(=pAr=gAr)
7. a) If p, g are primitive statements, prove that
(mpvg)alpariprg))=(pnrg)
b} Write the dual of the logical equivalence in part (a).

B. Write the dual for (a) g — p. (b) p — (g A r), (c) p < g,
and (d) p ¥ g, where p, g, and r are primitive statements.

9. Write the converse, inverse, and contrapositive of each of
the following implications. For each implication, determine its
truth value as well as the truth values of its corresponding con-
verse, inverse, and contrapositive.

a) If04+0=0,thenl4+1=1.

b) If =1 <3 and 3 + 7 = 10, then sin () = —1.
10, Determine whether each of the following is true or false.
Here p, g are arbitrary statements.

a) An equivalent way to express the converse of “p is
sufficient for g™ is “p is necessary for 4.
b) An equivalent way to express the inverse of “p is
necessary for g" is “—yg is sufficient for —p.”
¢) An eguivalent way to express the contrapositive of
*p is necessary for g” is “—g is necessary for —p.”
11. Let p, g. and r denote primitive statements, Find a form of
the contrapositive of p — (g — ») with (a) only one occurrence
of the connective —; (b) no occurrences of the connective —.

12. Show that for primitive statements p, g,
pYge=lpAr—glvi—parg)le—(peq)

13, Verify that [{(p «» g) A (g <+ 1) Ay <+ pl] &=
[(p =g} Ailg —r)A(r— p)], for primitive statements p,
g and r.

14. For primitive statements p, 4.
a) verify that p — [q — (p A q)] is a tantology.
b} verify that (p v g) = [g — g] is a tautology by using
the result from part (a) along with the substitution rules and
the laws of logic.
c)is(pvg)=[g— (pAqg)]atautology?
15. Define the connective “Nand” or “Not ... and ...” by
(ptg)= —(pa~sg), for any statements p, g. Represent the
following using only this connective.
a) -p b) pvyg
d) p—yg e} peryg
16. The connective “Nor™ or “MNot ... or ..." is defined for
any statements p, g by (p | g) = —(p v g). Represent the

statements in parts (a) through (e) of Exercise 15, using only
this connective.

¢l pag

17. For any statements p, g, prove that
a) ~(plg)e=(-pt—yg)
b) ~(ptq) = (-pl—q)
18. Give the reasons for each step in the following simplifica-

tions of compound statements.

a) [pvglaipy—g)lvyg
=lpviligr—gllveg
=ipv FR)vyg
= pvyg

Reasons
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o i L,
S

~q
"— ] —p—10 e
T r T, T Tz
[ t ] ~q —p— G~ — t
() or (b)
Figure 2.3
b (p=gq)a[=g ~lrv—g) Reasons 19. Provide the steps and reasons, as in Exercise 18, to establish

=prqlr—yg
=(—pVglh—g
=g Al(—pVy)

= (=g AP Y (g Ag)

= (g Aopi v Fy
= g AP

the following logical equivalences.
a) pvipaipvgll<=p
b) pvgvi—mpr—-garispyvgvr
c) [(=mpv=g) = (prgar)<pag
20. Simplify each of the networks shown in Fig. 2.3,

At the end of Section 2.1 we mentioned the notion of a valid argument. Now we will begin

a formal study of what we shall mean by an argument and when such an argument is valid.

This in turn will help us when we investigate how to prove theorems throughout the text.
We start by considering the general form of an argument, one we wish to show is valid.

(A prApPIn---ApPa) g,

Here n is a positive integer, the statements 2y, pa, pa. ..., p, are called the premises
of the argument, and the statement g is the conclusion for the argument.

The preceding argument is called valid if whenever each of the premises py, p2, pa. ...,
pn is true, then the conclusion ¢ is likewise true. [Note that if any one of
M. P2, P, ..., py is false, then the hypothesis py A pz A pa A -- - A p, 15 false and the
implication (py A p2 A p3 A - - A py) — g is automatically true, regardless of the truth
value of ¢.] Consequently, one way to establish the validity of a given argument is to show
that the statement {py A p2 A p3 A -« A py) — g is a tautology.

The following examples illustrate this particular approach.

= —lg v p)
23
Logical Implication: Rules of Inference
So let us consider the implication
EXAMPLE 2.19

Let p, g, r denote the primitive statements given as
p. Roger studies.
g: Roger plays racketball.

r:  Roger passes discrete mathematics.
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EXAMPLE 2.20

Now let py, p2. ps denote the premises
pi: If Roger studies, then he will pass discrete mathematics.
2. If Roger doesn’t play racketball, then he'll study.,
pa: Roger failed discrete mathematics,
We want to determine whether the argument
(PmApAP)—q
is valid. To do so, we rewrite py, pz, ps as
M. p—=r P g = p Py or
and examine the truth table for the implication
[(p—=r)A(~g—=p)A-r]—g
given in Table 2.14. Because the final column in Table 2.14 contains all 1°s, the implication

is a tautology. Hence we can say that (p; A p2 A p3) — g is a valid argument.

Table 2.14

M P Pa (PLAprAp3)—q
=g—=p | =r | [(p=riai-g—=pa-rl—g

1
~
1
by

e = =N =1 = |-
=R =TT T I -]
—_— e D e D e
okt o o e

—_— T e () e e
0 e D e D = O

Let us now consider the truth table in Table 2.15. The results in the last column of this table
show that for any primitive statements p, r, and s, the implication

[pAalipar)—=s5)]—=(r—s5)

Table 2.15

] [ P q (PrAp) =g
plr|s|par|(pari=s | r=5 | [lpallpar)=s)]—ir—=s)
0|00 0 1 1 |
01071 0 1 1 1
01110 0 1 0 1
01111 0 1 1 |

1 (00O 0 1 1 1

1 [0 ]1 0 1 1 1

1 1|0 1 0 )] 1

1 11 1 1 1 1
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EXAMPLE 2.21
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is a tautology. Consequently, for premises
m:op pr (par)—s

and conclusion g: (r — 5), we know that (p; A p2) — g is a valid argument, and we may
say that the truth of the conclusion g is deduced or inferred from the truth of the premises
LR LB

The idea presented in the preceding two examples leads to the following.

If p, g are arbitrary statements such that p — g is a tautology, then we say that p logically
implies g and we write p = g to denote this situation.

When p, g are statements and p = g, the implication p — g is a tautology and we
refer to p — g as a logical implication. Note that we can avoid dealing with the idea of a
tautology here by saying that p = ¢ (that is, p logically implies g) if g is true whenever p
is true,

In Example 2.6 we found that for primitive statements p, g, the implication p — (p v g)
is a tautology. In this case, therefore, we can say that p logically implies p v g and write
p = (p v g). Furthermore, because of the first substitution rule, we also find that p =
(p v q) for any statements p, g —that is, p — (p Vv g) Is a tautology for any statements
1, g, whether or not they are primitive statements.

Let p, ¢ be arbitrary statements.

1) If p <= g, then the statement p <+ g Is a tautology, so the statements p, g have the
same (corresponding) truth values. Under these conditions the statements p — g,
g — p are tautologies, and we have p = g and g = p.

2) Conversely, suppose that p = g and g = p. The logical implication p — g tells us
that we never have statement p with the truth value 1 and statement g with the truth
value 0. But could we have g with the truth value 1 and p with the truth value 07
If this occurred, we could not have the logical implication ¢ — p. Therefore, when
P =» g and g = p, the statements p, g have the same (corresponding) truth values
and p < g.

Finally, the notation p # g is used to indicate that p — g 1s nor a tautology — so the given
implication (namely, p — ) is not a logical implication.
From the results in Example 2.8 (Table 2.9) and the first substitution rule, we know that for
statements p, g,
—(pAg)e=—pvyg.

Consequently,

~lpAag)=(-pvg) and (mpV gl = (pAg)
for all statements p, g. Alternatively, because each of the implications

—(prg)—> (—-pv—g) and (—pv—q)—>—(pAg)
is a tautology, we may also write

[—prg)=(mpv—y)le=Ty and [(-pVv—g)——(parg)l<=T
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Returning now to our study of techniques for establishing the validity of an argument, we
must take a careful look at the size of Tables 2.14 and 2.15. Each table has eight rows. For
Table 2.14 we were able to express the three premises py, p2, and pi, and the conclusion
g, in terms of the three primitive statements p, g, and r. A similar situation arose for the
argument we analyzed in Table 2.15, where we had only two premises. But if we were
confronted, for example, with establishing whether

[(p—=r)ailr—s) Al =s) A (=Y u) A =] — —=p

is a logical implication (or presents a valid argument), the needed table would require
2% = 32 rows. As the number of premises gets larger and our truth tables grow to 64, 128,
256, or more rows, this first technique for establishing the validity of an argument rapidly
loses its appeal.

Furthermore, looking at Table 2.14 once again, we realize that in order to establish
whether

[(p=r)A(—~g—> p)A-r]—>gq

is a valid argument, we need to consider only those rows of the table where each of the three
premises p — r, —g — p, and —r has the truth value 1. (Remember that if the hypothesis —
consisting of the conjunction of all of the premises — is false, then the implication is true
regardless of the truth value of the conclusion.) This happens only in the third row, so a
good deal of Table 2.14 is not really necessary. (It is not always the case that only one row
has all of the premises true. Note that in Table 2.15 we would be concerned with the results
in rows 5, 6, and 8.)

Consequently, what these observations are telling us 1s that we can possibly eliminate a
great deal of the effort put into constructing the truth tables in Table 2,14 and Table 2.15. And
since we want to avoid even larger tables, we are persuaded to develop a list of technigues
called rules of inference that will help us as follows:

1) Using these techniques will enable us to consider only the cases wherein all the
premises are true. Hence we consider the conclusion only for those rows of a truth
table wherein each premise has the truth value 1— and we do net construct the truth

table.
2) The rules of inference are fundamental in the development of a step-by-step validation
of how the conclusion ¢ logically follows from the premises py. p2, 3. ..., py In

an implication of the form

(PLAP2ADIA- - ADy) > 4.

Such a development will establish the validity of the given argument, for it will show
how the truth of the conclusion can be deduced from the truth of the premises.

Each rule of inference arises from a logical implication. In some cases, the logical
implication is stated without proof. (However, several of these proofs will be dealt with in
the Section Exercises.)

Many rules of inference arise in the study of logic. We concentrate on those that we need
to help us validate the arguments that arise in our study of logic. These rules will also help
us later when we turn to methods for proving theorems throughout the remainder of the
text. Table 2.19 (on p. 78) summarizes the rules we shall now start to investigate,
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2.3 Logical Implication: Rules of Inference mn

For a first example we consider the rule of inference called Modus Ponens, or the Rule of
Detachment. (Modus Ponens comes from Latin and may be translated as “the method of
affirming.”) In symbolic form this rule is expressed by the logical implication

[pAip—q)]—q.

which is verified in Table 2.16, where we find that the fourth row is the only one where both
of the premises p and p — ¢ (and the conclusion g) are true.

Table 2.16
pPlag | p—=q | pralp—q) | palp—qgll—yg
010 1 0 1
0|1 1 0 1
1|0 0 0 1
{6l IE. | 1 1 1

The actual rule will be written in the tabular form

P
P—=4q
S
where the three dots ( -, ) stand for the word “therefore,” indicating that g is the conclusion
for the premises p and p — g, which appear above the horizontal line.
This rule arises when we argue that if (1) p is true, and (2) p — g is true (or p = g),
then the conclusion g must also be true. (After all, if ¢ were false and p were true, then we
could not have p — g true.)

The following valid arguments show us how to apply the Rule of Detachment.

a) 1) Lydia wins a ten-million-dollar lottery. P
2) If Lydia wins a ten-million-dollar lottery, then Kay will quit her job. P—=4q
3) Therefore Kay will quit her job. cog

b) 1) If Allison vacations in Paris, then she will have to win a scholarship, p—q
2) Allison is vacationing in Paris. J2
3) Therefore Allison won a scholarship. S.q

Before closing the discussion on our first rule of inference let us make one final ob-
servation, The two examples in (a) and (b) might suggest that the valid argument
[pA(p—g)]—q is appropriate only for primitive statements p, g. However,
since [p A (p — g)] — ¢ is a tautology for primitive statements p, g, it follows from the
first substitution rule that (all occurrences of) p or ¢ may be replaced by compound state-
ments — and the resulting implication will also be a tautology. Consequently, if r, s, ¢, and
i are primitive statements, then

rw s
{rvs)—(—rau)
e A

is a wvalid argument, by the Rule of Detachment—just as [(r v s) A [(rvs) —
(=t A u)]] = (=t A w) is a tautology,
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EXAMPLE 2.23

EXAMPLE 2.24

A similar situation — in which we can apply the first substitution rule — occurs for each
of the rules of inference we shall study. However, we shall not mention this so explicitly
with these other rules of inference.

A second rule of inference is given by the logical implication
(=@ Alg—=>n]—(p—r),
where p, g, and r are any statements. In tabular form it is written

p—=gq
SN e iF
Sp—=r

This rule, which is referred to as the Law of the Syllogism, arises in many arguments. For
example, we may use it as follows:

1) If the integer 35244 is divisible by 396, then the integer 35244 is

divisible by 66. pP—=q
2) If the integer 35244 is divisible by 66, then the integer 35244 is

divisible by 3. qg-—=>r
3) Therefore, if the integer 35244 is divisible by 396, then the integer

35244 is divisible by 3. Sp=T

The next example involves a slightly longer argument that uses the rules of inference
developed in Examples 2.22 and 2.23. In fact, we find here that there may be more than one
way to establish the validity of an argument.

Consider the following argument.

1) Rita is baking a cake.

2) If Rita is baking a cake, then she is not practicing her flute.

3) If Rita is not practicing her flute, then her father will not buy her a car.
4) Therefore Rita’s father will not buy her a car.

Concentrating on the forms of the statements in the preceding argument, we may write
the argument as

P (*)
p—>—q
=y = —F

e

Now we need no longer worry about what the statements actually stand for. Our objective
is to use the two rules of inference that we have studied so far in order to deduce the truth
of the statement —r from the truth of the three premises p, p — =g, and —g — =r.
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We establish the validity of the argument as follows:

Steps Reasons

1) p—=—yg Premise

2) mg— —r Premise

3 p—-or This follows from steps (1) and (2) and the Law of the Syllogism
4 p Premise

5) -.-r This follows from steps (4) and (3) and the Rule of Detachment

Before continuing with a third rule of inference we shall show that the argument presented
at (") can be validated in a second way. Here our “reasons™ will be shortened to the form
we shall use for the rest of the section. However, we shall always list whatever is needed
to demonstrate how each step in an argument comes about, or follows, from prior steps.

A second way to validate the argument follows.

Steps Reasons
1y p Premise
2) p——g Premise
3 —g Steps (1) and (2) and the Rule of Detachment
d) =g — —r Premise
5 .-r Steps (3) and (4) and the Rule of Detachment

The rule of inference called Modus Tollens is given by

p—=4q
.., S
T=p

This follows from the logical implication [(p — g) A —g] — —p. Modus Tollens comes
from Latin and can be translated as “method of denying.” This is appropriate because we
deny the conclusion, g, 50 as to prove —p. (Note that we can also obtain this rule from the
one for Modus Ponens by using the fact that p — g <= —g — —p.)

The following exemplifies the use of Modus Tollens is making a valid inference:

1) If Connie is elected president of Phi Delta sorority, then Helen will

pledge that sorority. P—+4q
2) Helen did not pledge Phi Delta sorority. =g
J3) Therefore Connie was not elected president of Phi Delta sorority. S.op

And now we shall use Modus Tollens to show that the following argument is valid (for
primitive statements p, r, 5, ¢, and u).

p—=>r
r—5
% =y
=t Vi
=l
T

Both Modus Tollens and the Law of the Syllogism come into play, along with the logical
equivalence we developed in Example 2.7.
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Steps Reasons
1) p—rr—s Premises
2y p—s Step (1) and the Law of the Syllogism
3 tv—s Premise
4) —swvr Step (3) and the Commutative Law of v
85) s—1t Step (4) and the fact that —s v <=5 — ¢
6) p—t Steps (2) and (5) and the Law of the Syllogism
7 —rvu Premise
B) t—u Step (7) and the fact that =t vV u <=t — u
9y p—=u Steps (6) and (8) and the Law of the Syllogism
10) —u Premise
11) . —p Steps (9) and (10) and Modus Tollens

Before continuing with another rule of inference let us summarize what we have just
accomplished (and not accomplished). The preceding argument shows that

Hp—=r)ar—=5)a(v-os)ai(—rvu)a—u]l= —p.
We have not used the laws of logic, as in Section 2.2, to express the statement
(p=r)air—=5)Alrv=s)A(=tvu -
as a simpler logically equivalent statement. Note that
[(p—=r)alr—=5)A (v —s)a (=t u) s —u] & —op,

For when p has the truth value 0 and u has the truth value 1, the truth value of —p is 1 while
thatof —w and (p — rF) A lr — 8) AV =) A (= v u) A= is .

Let us once more examine a tabular form for each of the two related rules of inference,
Modus Ponens and Modus Tollens.

Modus Ponens:  p— g Modus Tollens: p—g
I - M-
c.q Soop

The reason we wish to do this is that there are other tabular forms that may arise —and
these are similar in appearance but present invalid arguments — where each of the premises
is true but the conclusion is false,

a) Consider the following argument:
1) If Margaret Thatcher is the president of the United States, then

she is at least 35 years old. p—q
2) Margaret Thatcher is at least 35 years old. q
3) Therefore Margaret Thatcher is the president of the United States. op

Here we find that [(p — g) ~ g] — p is not a tautology. For if we consider the truth
value assignments p: 0 and g: 1, then each of the premises p — g and g is true
while the conclusion p is false. This invalid argument results from the fallacy
{error in reasoning) where we try to argue by the converse —that is, while
[(p — gq) ~ pl = q, it is not the case that [{(p — q) A q] = p.
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b)
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A second argument where the conclusion doesn't necessarily follow from the premises
may be given by:

1) If2+3=0,then2+4 =6, pP—q
2)2+3#F6 —p

3) Therefore 2 4+ 4 # 6. Sy

In this case we find that [{p — g) A —=p] — —g is not a tautology. Once again
the truth value assignments p: 0 and g: 1 show us that the premises p — g and —p
can both be true while the conclusion —yg is false. The fallacy behind this invalid
argument arises from our attempt to argue by the inverse—for although
[(p— g) A —g] = —p, it does not follow that [(p = g) A —p] = —g.

Before proceeding further we now mention a rather simple but important rule of infer-

ence.

The following rule of inference arises from the observation that if p, g are true statements,
then p ~ g is a true statement.

Now suppose that statements p, g occur in the development of an argument. These
statements may be (given) premises or results that are derived from premises and/or from
results developed earlierin the argument. Then under these circumstances the two statements
P, g can be combined into their conjunction p A g, and this new statement can be used in
later steps as the argument continues.

We call this rule the Rule of Conjunction and write it in tabular form as

r
i

Y

As we proceed further with our study of rules of inference, we find another fairly simple
but important rule.

The following rule of inference — one we may feel justillustrates good old common sense —
is called the Rule of Disjunctive Syllogism. This rule comes about from the logical impli-

cation

which

[(pvg)s—pl—=g,

we can derive from Modus Ponens by observing that p v g < —p — g.

In tabular form we write

pPvg
-p
c.q

This rule of inference arises when there are exactly two possibilities to consider and we are
able to eliminate one of them as being true. Then the other possibility has to be true. The
following illustrates one such application of this rule.

1)
2)
3)

Bart’s wallet is in his back pocket or it is on his desk. pvg
Bart's wallet is not in his back pocket. —p
Therefore Bart's wallet is on his desk. S.q
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EXAMPLE 2.28

At this point we have examined five rules of inference. But before we try to validate any
more arguments like the one (with 11 steps) in Example 2.25, we shall look at one more
of these rules. This one underlies a method of proof that is sometimes confused with the
contrapositive method (or proof) given in Modus Tollens. The confusion arises because
both methods involve the negation of a statement. However, we will soon realize that these
are two distinct methods, (Toward the end of Section 2.5 we shall compare and contrast
these two methods once again.)

Let p denote an arbitrary statement, and Fy a contradiction. The results in column 5 of Table
2.17 show that the implication (—p — Fy) — p is a tautology, and this provides us with
the rule of inference called the Rule of Contradiction. In tabular form this rule is written as

—p — Fg
SP

Table 2.17

|
pPl=p| P | =p=FK|(=p=>F)=p

1{ 0] 0 1 1
0 1 0 0 1

This rule tells us that if p is a statement and —p — Fy is true, then — p must be false because
Fy is false. So then we have p true.

The Rule of Contradiction is the basis of a method for establishing the validity of an
argument — namely, the method of Proof by Contradiction, or Reductio ad Absurdum. The
idea behind the method of Proof by Contradiction is to establish a statement (namely, the
conclusion of an argument) by showing that, if this statement were false, then we would
be able to deduce an impossible consequence. The use of this method arises in certain
arguments which we shall now describe.

In general, when we want to establish the validity of the argument

(PrAp2A--Apo)—q,
we can establish the validity of the logically equivalent argument
(PrAP2A- - APy Ag)— Fo.

[This follows from the tautology in column 7 of Table 2.18 and the first substitution rule —
where we replace the primitive statement p by the statement (p; A pz A - - - A pa)']

Table 2.18
Plg|lF|pa~q | (pAa=qQ)=F | p=q | (p=g)elpa—g) = F
o1 0 0 1 1 1
01 0 0 1 1 |
11010 1 0 0 1
11110 0 1 1 1
"In Section 4.2 we shall provide the reason why we know that for any statements pi, pa. ..., po, and g, it

follows that (g A pz A APl A TG 4= PL A P2 A A Pg N
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When we apply the method of Proof by Contradiction, we first assume that what we are
trying to validate (or prove) is actually false. Then we use this assumption as an additional
premise in order to produce a contradiction {or impossible situation) of the form 5 » —s, for
some statement 5. Once we have derived this contradiction we may then conclude that the
staternent we were given was in fact true — and this validates the argument (or completes
the proof).

We shall turn to the method of Proof by Contradiction when it is {or appears to be) easier
to use —q in conjunction with the premises py, pa, ..., p, inorder to deduce a contradiction
than it is to deduce the conclusion g directly from the premises p, pa, ..., p,. The method
of Proof by Contradiction will be used in some of the later examples for this section —
namely, Examples 2.32 and 2.35. We shall also find it frequently reappearing in other
chapters in the text.

MNow that we have examined six rules of inference, we summarize these rules and intro-
duce several others in Table 2.19 (on the following page).

The next five examples will present valid arguments. In so doing, these examples will

show us how to apply the rules listed in Table 2.19 in conjunction with other results, such
as the laws of logic.

Our first example demonstrates the validity of the argument

Per
—p—gq
g—s
Steps Reasons
1) p—r Premise
2) —r — —p Step(Dand p = r &= —r — —p
3) =p—g Premise
4) —r—gq Steps (2) and (3) and the Law of the Syllogism
5) g —=5 Premise

6) . —r—= Steps (4) and (5) and the Law of the Syllogism

A second way to validate the given argument proceeds as follows.

Steps Reasons

1) p—r Premise

2y g—5 Premise

3 —p—=g Premise

4) pvg Step (3) and (—p — g) = (——p v g) < (p v g), where the
second logical equivalence follows by the Law of Double Negation

S)rvs Steps (1), (2), and (4) and the Rule of the Constructive Dilemma

6) .—r—5 Step(5and (r v5) < (——r v 5) < (—r — 5), where the Law of
Double Negation is used in the first logical equivalence

The next example is somewhat more involved.
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Table 2.19
Rule of Inference Related Logical Implication Name of Rule
) p (pAalp—g)l—g Rule of Detachment
F—*q iModus Ponens)
S
2) p—yq p—=g)nlg—=r)]—=(p—>r) Law of the Syllogism
qg—r
P
) p—g [(p—=g)An—gl—=—p Modus Tollens
—q
So=p
4 p Rule of Conjunction
q
SopAg
5) pvg [(pvag)rn—pl—gq Rule of Disjunctive
—p Syllogism
c.q
6) —-p—=F (=p— Fy) = p Rule of
SoP Contradiction
7 _prg (prg)—p Rule of Conjunctive
Sop Simplification
8 p p—=>pvg Rule of Disjunctive
SPVg Amplification
9) pnrg (prg)nlp—(g—=r)l—r Rule of Conditional
p—=>{g—r) Proof
S
1) por [(p=rinlg—=rl—=Ilpvg —r] Rule for Proof
qg—>r by Cases
cApvgl—=r
) p—gq [(p=@)A(r=>s)a(pvir)]l—=(gVs) Rule of the
r—+& Constructive
pPNVT Dilemma
S qVs
12) p—gq (2= g)Alr—=>s)A(—gV—8)]— (—pv-r) Rule of the
F—+s Destructive
b i Dilemma
EXAMPLE 2.30 Establish the validity of the argument

P—q
g — (r A 8)
=r v (—=f v i)
FLaN

L
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Steps Reasons
1) p—g Premise
2) g —= (r As) Premise
3 p—=ras Steps (1) and (2) and the Law of the Syllogism
4 pat Premise
5) p Step (4) and the Rule of Conjunctive Simplification
6) ras Steps (5) and (3) and the Rule of Detachment
7 F Step (6) and the Rule of Conjunctive Simplification
8) —rvi—rvu) Premise
9) =(rat)vu Step (8), the Associative Law of v, and DeMorgan's Laws
10) Step (4) and the Rule of Conjunctive Simplification
1My rat Steps (7) and (10) and the Rule of Conjunction
12) . u Steps (9) and (11), the Law of Double Negation, and the

Rule of Disjunctive Syllogism

This example will provide a way to show that the following argument is valid.

EXAMPLE 2.31

If the band could not play rock music or the refreshments were not delivered
on time, then the New Year's party would have been canceled and Alicia would
have been angry. If the party were canceled, then refunds would have had to be
made. No refunds were made.

Therefore the band could play rock music.

First we convert the given argument into symbolic form by using the following statement
assignments:

The band could play rock music.

The refreshments were delivered on time.
The New Year's party was canceled.
Alicia was angry.

Refunds had to be made.

R s

The argument above now becomes

(—~pv—g)—>(ras)
r—t
o = =

-

We can establish the validity of this argument as follows,

Steps Reasons

1y r —1 Premise

2y —t Premise

3 —r Steps (1) and (2) and Modus Tollens

4} =r v —s Step (3) and the Rule of Disjunctive Amplification

5y —(r As5) Step (4) and DeMorgan's Laws

6) (—pv—g)— (ris) Premise

7}y =(=p v —=g) Steps (6) and (5) and Modus Tollens

B) prg Step (7), DeMorgan’s Laws, and the Law of Double
Negation

9 p Step (8) and the Rule of Conjunctive Simplification
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EXAMPLE 2.32

In this instance we shall use the method of Proof by Contradiction. Consider the argument

TP g
g
—-r

=

Toestablish the validity for this argument, we assume the negation — p of the conclusion p
as another premise. The objective now is to use these four premises to derive a contradiction
Fi. Our derivation follows,

Steps Reasons
1) —peg Premise
2) (mp—=q)r(g—=—p) Step(l)and (—=p <> g) < [(—=p = g) A (g = —p)]
3) -p—g Step (2) and the Rule of Conjunctive Simplification
4) g—r Premise
5) =p—r Steps (3) and (4) and the Law of the Syllogism
6) —p Premise (the one assumed)
T r Steps (3) and (6) and the Rule of Detachment
8) —r Premise
9 ra—rie= ) Steps (7) and (8) and the Rule of Conjunction
10y - p Steps (6) and (9) and the method of Proof by
Contradiction

If we examine further what has happened here, we find that
[(CpepAl@=r)a—rA=pl=F.

This requires the truth value of [(—p < g) A (g — r) A —=r A —p] to be (. Because
—p <> g, q— r, and —r are the given premises, each of these statements has the truth
value 1. Consequently, for [(=p <= g) A (g — r) A =r A = p] to have the truth value 0, the
staterment — p must have the truth value 0. Therefore p has the truth value 1, and the conclu-
sion p of the argument is true.

Before we consider our next example, we need to examine columns 5 and 7 of Table
2.20. These identical columns tell us that for primitive statements p, g, and r,

lp—= (g —=ril<=llprg)—rl

Using the first substitution rule, let us replace each occurrence of p by the compound
statement {p; A pz A -« - A py). Then we obtain the new result

[(mAPA--Ap)=2(gomSApA--ApaAg)t =]

*In Section 4.2 we shall present a formal proof of why

(Praprac-ApglrageasspAaprio A Pghg.
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Table 2.20
Plglr | pag|lipagl=r | g—=r | p=ig—=r)
0100 0 1 1 1
IV 0 1 1 1
0110 0 | 0 |
0f(1]1 0 1 1 1
100 0 1 1 1
1 (0|1 0 | | |
1({1]0 1 0 0 0
1|11 | | 1 |

This result tells us that if we wish to establish the validity of the argument (*) we may be
able to do so by establishing the validity of the corresponding argument (**).

™ m i B -

P2 P2

fﬂ ) P
cg—=r q

After all, suppose we want to show that g — r has the truth value 1, when each of
M. P2, .., py does, IF the truth value for ¢ is 0, then there is nothing left to do, since
the truth value for ¢ — r is 1. Hence the real problem is to show that g — r has truth
value 1, when each of py, p2, ..., P, and g does —that 1s, we need to show that when
Pl P2, P, q each have truth value 1, then the truth value of r is 1.

We demonstrate this principle in the next example.

In order to establish the validity of the argument

() u—>r
(ras)—=(pwve)
g~ (1 Af5)
=

Sg—=p

we consider the corresponding argument

(") w—=r
(ras)—=(pvi)
g — (1 A8)
=t
q
P

[Note that g is the hypothesis of the conclusion ¢ — p for argument (*) and that it becomes
another premise for argument (**) where the conclusion is p.]
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EXAMPLE 2.34

To validate the argument (**) we proceed as follows.

Steps Reasons
1) g Premise
2) g — (uns) Premise
3 ounrs Steps (1) and (2) and the Rule of Detachment
4) u Step (3) and the Rule of Conjunctive Simplification
S5l u—r Premise
6) r Steps (4) and (5) and the Rule of Detachment
s Step (3) and the Rule of Conjunctive Simplification
8) ras Steps (6) and (7) and the Rule of Conjunction
M (ras)—=(pvi) Premise
10) pwvir Steps (8) and (9) and the Rule of Detachment
11} —r Premise
12) . p Steps (10) and (11) and the Rule of Disjunctive Syllogism

We now know that for argument (**)
[(w—=ryaliras)—=(pvdlalg— was)a-tagl=p,
and for argument (*) it follows that

[—=ryallrasi—=(pvlalg— (usrsla—-t]l=(g— p).

Examples 2.29 through 2.33 have given us some idea of how to establish the validity
of an argument. Following Example 2.25 we discussed two situations indicating when an
argument is invalid — namely, when we try to argue by the converse or the inverse. So now
it is time for us to learn a little more about how to determine when an argument is invalid.

Given an argument

M
P2
P

_ Pn
Soq
we say that the argument is invalid if it is possible for each of the premises py, pa, pa, ...,
P to be true (with truth value 1), while the conclusion g is false (with truth value 0).
The next example illustrates an indirect method whereby we may be able to show that
an argument we feel is invalid (perhaps because we cannot find a way to show that it is
valid) actually is invalid.

Consider the primitive statements p, g, r, 5, and ¢ and the argument

P
pPvq
q—(r—s)
t—r

. R =

To show that this is an invalid argument, we need one assignment of truth values for each
of the statements p, g, r, 5, and ¢ such that the conclusion —s — —t is false (has the truth
value () while the four premises are all true (have the truth value 1). The only time the
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conclusion —s — —r is false is when —s is true and —¢ is false. This implies that the truth
value for 5 is 0 and that the truth value for ¢ is 1.

Because p is one of the premises, its truth value must be 1. For the premise p v g to
have the truth value 1, g may be either true (1) or false (0). So let us consider the premise
t — r where we know that ¢ is true. If r — r is to be true, then r must be true (have the
truth value 1). Now with r true (1) and 5 false (0), it follows that r — s is false (0), and that
the truth value of the premise ¢ — (r — 5) will be 1 only when g is false (0).

Consequently, under the truth value assignments

pro 1 g: 0 rio 1 20 Ly |
the four premises
p PVq q = {r = 5) t—r
all have the truth value 1, while the conclusion
—5 — =

has the truth value 0. In this case we have shown the given argument to be invalid.

The truth value assignments p: 1, g: 0, r: 1, 5: 0, and ¢: 1 of Example 2.34 provide one
case that disproves what we thought might have been a valid argument. We should now
start to realize that in trying to show that an implication of the form

(PLAPLAPIA AP =g

presents a valid argument, we need to consider all cases where the premises py, p2, P31, ...,
P, are true. [Each such case is an assignment of truth values for the primitive statements
(that make up the premises) where py, p2. pa. ... . p, are true.] Inorder to do so — namely,
to cover the cases without writing out the truth table — we have been using the rules of
inference together with the laws of logic and other logical equivalences. To cover all the
necessary cases, we cannot use one specific example (or case) as a means of establishing
the validity of the argument (for all possible cases). However, whenever we wish to show
that an implication (of the preceding form) is not a tautology, all we need to find is one
case for which the implication is false — that is, one case in which all the premises are true
but the conclusion is false. This one case provides a counterexample for the argument and
shows it to be invalid.

Let us consider a second example wherein we try the indirect approach of Example 2.34.

What can we say about the validity or invalidity of the following argument? Here p, q, r,
and s denote primitive statements.)

P—4q

g3

r— —§

=p¥r

A

Can the conclusion —p be false while the four premises are all true? The conclusion —p
is false when p has the truth value 1. So for the premise p — g to be true, the truth value
of g must be 1. From the truth of the premise ¢ — s, the truth of ¢ forces the truth of
5. Consequently, at this point we have statements p, g, and 5 all with the truth value 1.



Chapter 2 Fundamentals of Logic

Continuing with the premise r — —s, we find that because 5 has the truth value 1, the truth
value of r must be (). Hence r is false. But with —p false and the premise =p ¥ r true, we
also have r true. Therefore we find that p = (—r A r).

We have failed in our attempt to find a counterexample to the validity of the given
argument. However, this failure has shown us that the given argument is valid — and the
validity follows by using the method of Proof by Contradiction.

This introduction to the rules of inference has been far from exhaustive. Several of the
books cited among the references listed near the end of this chapter offer additional material
for the reader who wishes to pursue this topic further. In Section 2.5 we shall apply the ideas
developed in this section to statements of a more mathematical nature. For we shall want to
learn how to develop a proof for a theorem, And then in Chapter 4 another very important
proof technique called mathematical induction will be added to our arsenal of weapons for
proving mathematical theorems. First, however, the reader should carefully complete the

exercises for this section,

EXERCISES 2.3

1. The following are three valid arguments. Establish the va-
lidity of each by means of a truth table. In each case, determine
which rows of the table are crucial for assessing the validity of
the argument and which rows can be ignored.

al[prip=giarl—=[pvg)—r]
b) [[(pAg)—=rln=g Alp— )] = (=pv-y)
o llpvigvra—gl—(pvr)
2. Use truth tables to verify that each of the following is a
logical implication.
a lip=glnlg—ril—=ip—r)
b) [(p—=+g)r—~gq]l——p
¢ [(pvgin=pl—gq
d) [(p=risnig=r]=[pve)—r]

3. Verify that each of the following is a logical implication by
showing that it is impossible for the conclusion to have the truth
value 0 while the hypothesis has the truth value 1.

a) (pAg)—p

b} p—(pvyq)

¢ [(pvg)r-pl—gq

d) [(p—=ginir—=s)aipvr)]—lgvs)

e) [(p—=g)Alr—=5)A(=gVv=s)]—=(=pv-r)

4. For each of the following pairs of statements, use Modus
Ponens or Modus Tollens to fill in the blank line so that a valid
argument is presented.

a) If Janice has trouble starting her car, then her daughter

Angela will check Janice's spark plugs.
Janice had trouble starting her car.

b) If Brady solved the first problem correctly, then the an-
swer he obtained is 137,
Brady’s answer to the first problem is not 137,

¢) If this is a repeat-until loop, then the body of this loop
is executed at least once.

.. The body of the loop is executed at least once.

d) If Tim plays basketball in the afternoon, then he will not
watch television in the evening.

.. Tim didn't play basketball in the afternoon,

5. Consider each of the following arguments. If the argument
is valid, identify the rule of inference that establishes its validity.
If not, indicate whether the error is due to an attempt 1o argue
by the converse or by the inverse.

a) Andrea can program in C++, and she can program in
Java.
Therefore Andrea can program in C++.

b) A sufficient condition for Bubbles to win the golf tour-
nament is that her opponent Meg not sink a birdie on the
last hole.

Bubbles won the golf tournament.

Therefore Bubbles® opponent Meg did not sink a birdie on
the last hole.

c¢) If Ron's computer program is correct, then he'll be able
to complete his computer science assignment in al most two
hours.

It takes Ron over two hours to complete his computer sci-
ence assignment.

Therefore Ron’s computer program is not correct.

d) Eileen’s car keys are in her purse, or they are on the
kitchen table,



Eileen’s car keys are not on the Kitchen table,
Therefore Eileen’s car keys are in her purse.

e) If interest rates fall, then the stock market will rise.
Interest rates are not falling.
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9. a) Give the reasons for the steps given to validate the

argument

[(p—=q)A(=rvs)A(pvr)] = (=g = 3).

Therefore the stock market will not rise. Stle]ps : > Reasons
6. For primitive statements p, g, and », let P denole the 2 —g j:;
statement
3 =
[paigarilv=lpwvigar) 4) =rvs
while P, denotes the statement 5) —r
[paigvrily —lpvigvrll R} 2ore
7 —g
a) Use the rules of inference to show that 8) —p
gArsgvr 9 pvr
g 10) r
. 7
b) Is it true that P = P 7 i) —r

7. Give the reason(s) for each step needed to show that the 12) =g —s
following argument is valid. : . .
b) Give a direct proof for the result in part (a).

Alp=glalsvrialr— = (51 . . .
[pA(p—aq) b ) = ) ¢} Give a direct proof for the result in Example 2,32,

f;tllﬁ Reasons 10. Establish the validity of the following arguments.
P
2) psg a) [(pr—g)ar]=[parivgl
3 g b [prip—=glal—gvr)]l—r
4) r——y ¢ p—=yg d p—=g
5) g—=+—r - rF—= =y
6) —r - r
D ovr TPV —
) 5
9 - avi eg) p—=lg—=r) f} parg
. =P p—(rag)
8. Give the reasons for the steps verifying the following n F— (5 1)
argument. iR -5
(cpvg)—>r it
F=(svh) g p—ig—=r) h) pvg
—F AT pPNE —pvr
=f — =} I — -
Sop =g ]
Steps Reasons 2 i =
1) —s A —u 11. Show that each of the following arguments is invalid by
2) —u providing a counterexample — that is, an assignment of truth
3) -y — —t values for the given primitive statements p, g, r, and 5 such
4) =t that all premises are true (have the truth value 1) while the con-
5) —s clusion is false (has the truth value 0),

6) —s At
TN r=(svi)
B) =lswvi)— =r

a) [(pAr—g)alp—=lg—=r)]]—=—r
by [[(prg)—=rial-gvri]—p

9) (=5 A—t) = ko P g =g

10) —r Sl e

) (~pva)—r s 290
12) —r = =(—pvg) -,.' g Ivf; :

13) = = (pA—g)
14) pr—yg
15) ~.p
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Write cach of the following arguments in symbolic form.

Then establish the validity of the argument or give a counter-
example to show that it is invalid,

13

a) If Rochelle gets the supervisor's position and works
hard, then she'll get a raise. If she gets the raise, then she'l]
buy a new car. She has not purchased a new car, Therefore
either Rochelle did not get the supervisor's position or she
did not work hard.

b} If Dominic goes to the racetrack, then Helen will be mad.
If Ralph plays cards all night, then Carmela will be mad. If
either Helen or Carmela gets mad, then Veronica (their at-
torney ) will be notified. Veronica has not heard from either
of these two clients. Consequently, Dominic didn't make it
to the racetrack and Ralph didn't play cards all night.

¢} If there is a chance of rain or her red headband is missing,
then Lois will not mow her lawn. Whenever the tcmpera-
ture is over 80°F, there is no chance for rain. Today the
temperature is 85°F and Lois is wearing her red headband,
Therefore (sometime today) Lois will mow her lawn,
a) Given primitive statements p, g, r, show that the
implication

[(pvg)A(=pVvr)]—(gVvr)
is a tautology.
b} The tautology in part (a) provides the rule of inference
known as resolution, where the conclusion (g v r) is called
the resolvent. This rule was proposed in 1965 by 1. A. Robin-
son and is the basis of many computer programs designed
to automate a reasoning system.

In applying resolution each premise (in the hypothe-
sis) and the conclusion are written as clauses. A clause is
a primitive statement or its negation, or it is the disjunc-
tion of terms each of which is a primitive statement or the
negation of such a statement. Hence the given rule has the

24
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clauses (p v g) and (—p v r) as premises and the clause
(g * r)asits conclusion (or, resolvent). Should we have the
premise = p A q), we replace this by the logically equiva-
lent clause = p v =g, by the first of DeMorgan’s Laws. The
premise ={ p v ¢ can be replaced by the two clauses —p,
=g . This is due to the second DeMorgan Law and the Rule
of Conjunctive Simplification. For the premise p v (g A r),
we apply the Distributive Law of v over A and the Rule
of Conjunctive Simplification to arrive at either of the two
clauses p v g, p v r. Finally, the premise p — g becomes
the clause =p v g.

Establish the validity of the following arguments, using
resolution (along with the rules of inference and the laws

of logic).
i pvigar) (i) p
p—+s Py
SPVE ..q
{iii) pwvyg (ivi —-pwvgvwvr
p=r -
r—3 -
Tavs Top
¥) —pwvs
=t (5 ATF)
=g W F
pvgwi
STV

¢) Write the following argument in symbolic form, then
use resolution (along with the rules of inference and the
laws of logic) to establish its validity.

Jonathan does not have his driver’s license or his new
car is out of gas. Jonathan has his driver’s license or he does
not like to drive his new car. Jonathan's new car is not out
of gas or he does not like to drive his new car, Therefore,
Jonathan does not like to drive his new car.

In Section 2.1, we mentioned how sentences that involve a variable, such as x, need not
be statements. For example, the sentence “The number x + 2 is an even integer” is not
necessarily true or false unless we know what value is substituted for x. If we restrict our
choices to integers, then when x is replaced by —5, —1, or 3, for instance, the resulting
statement is false. In fact, it is false whenever x is replaced by an odd integer. When an
even integer is substituted for x, however, the resulting statement is true.

We refer to the sentence “The number x + 2 is an even integer” as an open statement,

which we formally define as follows,

Definition 2.5

A declarative sentence is an open starement if

1) it contains one or more variables, and
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2) it is not a statement, but

3) it becomes a statement when the variables in it are replaced by certain allowable
choices.

When we examine the sentence “The number x 4 2 is an even integer” in light of
this definition, we find it is an open statement that contains the single variable x. With
regard to the third element of the definition, in our earlier discussion we restricted the
“certain allowable choices” to integers. These allowable choices constitute what is called
the universe or universe of discourse for the open statement. The universe comprises the
choices we wish to consider or allow for the variable(s) in the open statement. (The universe
is an example of a set, a concept we shall examine in some detail in the next chapter.)

In dealing with open statements, we use the following notation:

The open statement *“The number x + 2 is an even integer” is denoted by p(x) [or g (x),
r(x), etc.]. Then —p(x) may be read “The number x + 2 is not an even integer.”

We shall use g(x, ¥) to represent an open statement that contains two variables. For
example, consider

gl(x, ¥v): The numbers y + 2, x — v, and x + 2y are even integers.

In the case of g (x, y), there is more than one occurrence of each of the variables x, v. Itis
understood that when we replace one of the x's by a choice from our universe, we replace
the other x by the same choice. Likewise, when a substitution (from the universe) is made
for one occurrence of v, that same substitution is made for all other occurrences of the
variable y.

With p(x)and g (x, y) as above, and the universe still stipulating the integers as our only
allowable choices, we get the following results when we make some replacements for the
variables x, v.

p(5):  The number 7{= 5 + 2) is an even integer. (FALSE)
=p(7):  The number 9 is not an even integer. (TRUE)
g(4,2): The numbers 4, 2, and 8 are even integers. (TRUE)

We also note, for example, that (5, 2) and g(4, 7) are both false statements, whereas
=g (5, 2) and —g (4, 7) are true.

Consequently, we see that forboth p(x) and g{x, v), as already given, some substitutions
result in true statements and others in false statements, Therefore we can make the following
true statements.

1) For some x, p(x).
2) For some x, v, gl{x, v).

MNote that in this situation, the statements “For some x, —p(x)" and “For some x, v,
=g (x, ¥)" are also true. [Since the statements “For some x, p(x)" and “For some x, = p(x)"
are both true, we realize that the second statement is nor the negation of the first—even
though the open statement — p(x) is the negation of the open statement pix). And a similar
result is true for the statements involving g(x, v) and =g {x, v).]

The phrases “For some x" and “For some x, ¥" are said to guantify the open statements
pix) and g (x, v), respectively. Many postulates, definitions, and theorems in mathematics
involve statements that are quantified open statements. These result from the two types of
quantifiers, which are called the existential and the universal quantifiers.



88 Chapter 2 Fundamentals of Logic

| EXAMPLE 2.36

Statement (1) uses the existential quantifier “For some x,” which can also be expressed
as “For at least one x" or “There exists an x such that.” This quantifier is written in symbolic
form as 3x. Hence the statement “For some x, p(x)" becomes x p(x), in symbolic form.

Statement (2) becomes 3x Ay g(x, v) in symbolic form. The notation 3x, y can be used
to abbreviate Ix Jy g(x, ¥v) to Jx. v g(x, ¥).

The universal gquantifier is denoted by ¥x and is read “For all x,” “For any x,” “For each
x,” or “For every x." “For all x, v,” “For any x, v,” “For every x, »,” or “For all x and y"
is denoted by ¥x ¥y, which can be abbreviated to ¥, v.

Taking p(x) as defined earlier and using the universal quantifier, we can change the open
statement p(x) into the (quantified) statement ¥y p(x), a false statement.

If we consider the open statement r{x): “2x is an even integer” with the same universe
(of all integers), then the (quantified) staterment Wx r(x) is a true statement. When we say
that ¥x r(x) is true, we mean that no matter which integer (from our universe) is substituted
for x in r{x), the resulting statement is true. Also note that the statement 3x r(x) is a true
staternent, whereas ¥x —r(x) and Jx —r{x) are both false.

The variable x in each of open statements pi{x) and r(x) is called a free variable (of
the open statement). As x varies over the universe for an open statement, the truth value
of the statement (that results upon the replacement of each occurrence of x) may vary.
For instance, in the case of p{x), we found p(5) to be false — while p{f) turns out to he
a true statement. The open statement r(x), however, becomes a true statement for every
replacement (for x) taken from the universe of all integers. In contrast to the open statement
plx) the statement 3x p(x) has a fixed truth value— namely, true. And in the symbolic
representation Jx p(x) the variable x is said to be a bound variable — it is bound by the
existential quantifier 3. This is also the case for the statements Wx r(x) and ¥x —r(x), where
in each case the variable x is bound by the universal quantifier ¥.

For the open statement g(x, v) we have two free variables, each of which is bound by
the quantifier 3 in either of the statements Ix v gix, v) or Jx, v glx, v).

5% an

RLIETY LT

The following example shows how these new ideas about quantifiers can be used in
conjunction with the logical connectives,

Here the universe comprises all real numbers. The open statements p(x), g(x), r(x), and
s(x) are given hy
plx): x=0 rix): x*=3x-4=0
gix): =0 six): x2—-3=0.
Then the following statements are true.

1) Ax [plx) Arix)]

This follows because the real number 4, for example, is a member of the universe and is
such that both of the statements p(4) and r(4) are true.

2) Va [plx) — glx)]

If we replace x in pix) by a negative real number a, then p(a) is false, but pia) — gia)
is true regardless of the truth value of g(a). Replacing x in p(x) by a nonnegative real
number b, we find that p(b) and g(b) are both true, as is p(b) — g(b). Consequently,
pix) — gix) is true for all replacements x taken from the universe of all real numbers, and
the (quantified) statement ¥x [p(x) — g(x)] is true.

This statement may be translated into any of the following:

a) For every real number x, if x = 0, then =0,
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b) Every nonnegative real number has a nonnegative square.
¢) The square of any nonnegative real number is a nonnegative real number.

d) All nonnegative real numbers have nonnegative squares.

Also, the statement Ix [p(x) — g(x)] is true.

The next statements we examine are false.
1) Wy [ (x) — s(x)]

We want to show that the statement is false, so we need exhibit only one counterexample —
that is, one value of x for which g(x) — si{x) is false —rather than prove something
for all x as we did for statement (2). Replacing x by 1, we find that (1) is true and
s(1) is false. Therefore (1) — s(1) is false, and consequently the (quantified) statement
W [g(x) — s(x)] is false. [Note that x = 1 does not produce the only counterexample:
Every real number a between —+/3 and /3 will make gla) true and s{a) false.]

2 Y [r(x) v s(x)]

Here there are many values for x, such as 1, % —%, and 0, that produce counterexamples.
Upon changing quantifiers, however, we find that the statement 3x [r(x) v s(x)] is true.

¥) Vi [r(x) = p(x)]

The real number —1 is a solution of the equation x> — 3x — 4 = 0, so r(—1) is true while
pi—1) is false. Therefore the choice of —1 provides the unique counterexample we need
to show that this (quantified) statement is false,

Statement (3') may be translated into either of the following:

a) For every real number x, if ¥ —3r—4=0,thenx = 0.

b) For every real number v, if x is a solution of the equation ¥t =3¢ —4 =0, then
x =10

EXAMPLE 2.37

Now we make the following observations. Let p(x) denote any open statement (in the
variable x) with a prescribed nonempty universe (that is, the universe contains at least one
member). Then if ¥x p(x) is true, so is Ix plx), or

Vx plx) = Ix plx).

When we write ¥x p(x) = 3x p(x) we are saying that the implication ¥x p(x) —
Jx plx) is a logical implication — that is, Ix p(x) is true whenever Vix p(x) is true. Also,
we realize that the hypothesis of this implication is the quantified starement ¥x plx), and
the conclusion is 3x p(x), another quantified starement. On the other hand, it does not
follow that if 3x p(x) is true, then ¥x p(x) must be true. Hence Ix p(x) does not logically
imply ¥x p(x), in general.

Our next example brings out the fact that the quantification of an open statement may
not be as explicit as we might prefer.

a) Let us consider the universe of all real numbers and examine the sentences:
1) If a number is rational, then it is a real number.
2) If x is rational, then x is real,
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We should agree that these sentences convey the same information. But we should
also question whether the sentences are statements or open statements. In the case
of sentence (2) we at least have the presence of the variable x. But neither sentence
contains an expression such as “For all,” or “For every,” or “For each.” Our one and
only clue to indicate that we are dealing with universally quantified statements here is

[Tt )

the presence of the indefinite article “a" in the first sentence. In situations like these
the use of the universal quantifier is implicir as opposed to explicit,
If we let plx), g(x) be the open statements

pix):  xisarational number g(x): x is areal number,

then we must recognize the fact that both of the given sentences are somewhat informal
ways of expressing the quantified statement

Vx [p(x) — g(x)].
b) For the universe of all triangles in the plane, the sentence
“An equilateral triangle has three angles of 60°, and conversely.”

provides another instance of implicit quantification. Here the indefinite article *An™ is
the only indication that we might be able to express this sentence as a statement with
a universal quantifier. If the open statements

e(r): Triangle ¢ is equilateral.

a(t):  Triangle ¢ has three angles of 60°.

are defined for this universe, then the given sentence can be written in the explicit
quantified form

Wr [eir) < al)].

¢} Inthe typical trigonometry textbook one often comes across the trigonometric identity

2

-
sin” x 4+ cos° x = 1.

This identify contains no explicit quantification, and the reader must understand or be
told that it is defined for all real numbers x. When the universe of all real numbers is
specified (or at least understood), then the identity can be expressed by the (explicitly)
guantified statement

Vx [sin’ x + cos® x = 1].
d) Finally, consider the universe of all positive integers and the sentence
“The integer 41 is equal to the sum of two perfect squares.”

Here we have one more example where the quantification is implicit —but this
time the quantification is existential. We may express the result here in a more formal
(and symbolic) manner as

Im 3n [41 = m® + n?).

The next example demonstrates that the truth value of a quantified statement may depend
on the universe prescribed.
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: : 2
EXAMPLE 2.38 Consider the open statement p(x): x*= L.

1) If the universe consists of all positive integers, then the quantified statement Wx p(x)
1§ true.

2) For the universe of all positive real numbers, however, the same quantified state-
ment ¥x pix) is false. The positive real number 1,2 provides one of many possible
counterexamples.

Yet for either universe, the quantified statement 3x p(x) is true,

One use of quantifiers in a computer science setting is illustrated in the following

example.
| EXAM In the following program segment, n is an integer variable and the variable A is an array
' PLE 2.59 A[l]. A[2]. ..., A[20] of 20 integer values.

forn :=1to 20 do
Aln) :=n*n-n

The following statements about the array A can be represented in quantified form, where
the universe consists of all integers from | to 20, inclusive.

1) Every entry in the array is nonnegative:
Wn (Aln] = 0).
2) There exist two consecutive entries in A where the larger entry is twice the smaller:
Jn (Aln + 1] = 2A[n]).
3) The entries in the array are sorted in (strictly) ascending order:
Vr[(1=n=19) — (Aln] < Aln + 1])].
Our last statement requires the use of two integer variables m, n.
4) The entries in the array are distinct:
Y ¥n [(m #n) — (Alm] # Aln])], or
Vi, n [(m <n) = (Alm] # Aln])].

Before continuing, we summarize and somewhat extend, in Table 2.21, what we have
learned about quantifiers.

The results in Table 2.21 may appear to involve only one open statement, However, we
should realize that the open statement p(x) in the table may stand for a conjunction of open
statements, such as g (x) ~ r{x), oran implication of open statements, such as s(x) — r(x).
If, for example, we want to know when the statement 3x [s(x) — r(x)] is true, then we
look at the table for 3x pix) and use the information provided there. The table tells us that
i [s(x) — t(x)]is true when s(a) — f(a) is true for some (at least one) a in the prescribed
universe.

We will look further into quantified statements involving more than one open statement.
Before doing so, however, we need to examine the following definition. This definition is
comparable to Definitions 2.2 and 2.4 where we defined the ideas of logically equivalent
statements and logical implication. [t seitles the same types of questions for open statements.
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Table 2.1

Statement When Is It True? When Is It False?

dx pix) For some (at least one) a in For every a in the universe,
the universe, pla) is true. pla) is false,

Wx plx) For every replacement a from There is at least one replacement
the universe, pia) is true. a from the universe for which

pla) is false,

Jx =plx) For at least one choice g in For every replacement a in the
the universe, p(a) is false, so universe, pla) is true.
its negation —pia) is true.

Vi —=p(x) For every replacement a from There is at least one replacement
the universe, pia) is false and ¢ from the universe for which
its negation —pia) is true. —pia) is false and p(a) is true.

Definition 2.6

Definition 2.7

Let pix), g(x) be open statements defined for a given universe.

The open statements p(x) and g(x) are called (logically) equivalent, and we write
Wx [pix) <= g(x)] when the biconditional p(a) <> g(a) is true for each replacement a
from the universe (that is, p(a) <= g(a) for each a in the universe). If the implication
pla) — gla) is true for each a in the universe (that is, p(a) =+ g(a) for each a in the
universe), then we write Vx [p(x) = g(x)] and say that p(x) logically implies g(x).

For the universe of all triangles in the plane, let p(x), g(x) denote the open statements
plx): xis equiangular glx):  x is equilateral.

Then for every particular triangle a (a replacement for x) we know that p(a) <+ g(a) is true
(that is, p(a) <= g(a), for every triangle in the plane). Consequently, Vx [p(x) < g(x)].
Observe that here and, in general, ¥x [ p(x) <= g(x)] if and only if ¥x [p(x) = g(x)]
and Vx [g(x) = p(x)].
We also realize that a definition similar to Definition 2.6 can be given for two open
statements that involve two or more variables.

Now we take another look at the logical equivalence of statements (not open state-
ments) as we examine the converse, inverse, and contrapositive of a statement of the form

¥x [p(x) = g(x)].

For open statements p(x), g{x)— defined for a prescribed universe — and the universally
guantified statement ¥x [ p(x) — g (x)], we define:

1) The contrapositive of ¥x [p(x) — g(x)] to be Wx [=g (x) — —=p(x)].

2) The converse of ¥x [p(x) — g(x)] to be ¥x [g(x) — p(x)].

3) The inverse of Wx [p(x) — qix)] to be ¥Wx [—p(x) — —g(x)].

The following two examples illustrate Definition 2.7,
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For the universe of all quadrilaterals in the plane let 5 (x) and e(x) denote the open statements
s(x):  xisasquare e(x): x isequilateral.
a) The statement
Vx [s(x) — e(x)]
is a true statement and is logically equivalent to its contrapositive
Vx [—e(x) = —s(x)]
because [s(a) — e(a)] <= [—ela) — —s(a)] for each replacement a. Hence
Vx [s(x) = e(x)] < Vx [—e(x) = —s(x)].
b) The statement
Yx [elx) — s(x)]
is a false statement and is the converse of the true statement
Wy [s(x) = e(x)].
The false statement
Vx [—s(x) — —e(x)]

is the inverse of the given statement Vx [s(x) — e(x)].
Since [e(a) — s(a)] < [—s(a) — —e(a)] for each specific quadrilateral a, we
find that the converse and inverse are logically equivalent — that is,

W le(x) — s(x)] = V¥x [—5(x) = —e(x)].

Here p(x) and g{x) are the open statements
plx) x| =3 gix): x>3
and the universe consists of all real numbers.
a) The statement ¥x [p(x) — g(x)] is a false statement. For example, if x = —5, then
p(—5) is true while g(—>5) is false. Consequently, p(—5) — g{—5) is false, and so
is Wx [p(x) — g(x)].
b) We can express the converse of the given statement [in part (a)] as follows:
Every real number greater than 3 has magnitude
(or, absolute value) greater than 3.
In symbolic form this true statement is written ¥x [g(x) — p(x)].
c) The inverse of the given statement is also a true statement. In symbolic form we have

¥ [=pix) — —g(x)], which can be expressed in words by

If the magnitude of a real number is less than or equal to 3,
then the number itself is less than or equal to 3.
And this is logically equivalent to the (converse) statement given in part (h).

d) Here the contrapositive of the statement in part (a) is given by Vx [—g(x) — —p(x]].
This false statement is logically equivalent to ¥Wx [p(x) — ¢(x)] and can be expressed
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as follows:
If a real number is less than or equal to 3, then so is its magnitude.
e) Together with p(x) and g(x) as above, consider the open statement
rix): x = =3

which is also defined for the universe of all real numbers. The following four state-
ments are all true:

Statement: Wx [p(x) — (r(x) v g(x)]
Contrapositive:  Vx [—=(r(x) v g(x)) = —p(x)]
Converse: W [(r(x) v glx)) = plx)]
Inverse: Wx [=p(x) = =(r{x) v g(x))]

In this case (because the statement and its converse are both true) we find that the
statement ¥x [p(x) < (r(x) v g(x))] is true.

EXAMPLE 2.42

Now we use the results of Table 2.21 once again as we examine the next example.

Here the universe consists of all the integers, and the open statements r(x), s(x) are
given by

rix): 2x+1=35 s(x): x*=0.

We see that the statement Jx [r(x) A s(x)] is false because there is no one integer a such
that 2a + 1 = 5 and a* = 9. However, there is an integer b (= 2) such that 2b+ 1 =5,
and there is a second integer ¢ (= 3 or —3) such that ¢* = 9. Therefore the statement
Ax rix) A Ix s(x) is true. Consequently, the existential quantifier 3x does not distribute
over the logical connective ~. This one counterexample is enough to show that

Jx [rix) A s(x)] <& [Tx rix) A Tx s(x)],

where <2 is read “is not logically equivalent to.” It also demonstrates that
[Fx r(x) A Ix s(x)} £ Ix [r(x) A s(x)],

where £ is read “does nor logically imply.” So the statement
[Fx rix) A Jx s(x)] = x [r(x) A s(x)]

is not a tautology.

What, however, can we say about the converse of a quantified statement of this form?
At this point we present a general argument for any (arbitrary) open statements p(x), g(x)
and any (arbitrary) prescribed universe.

Examining the statement

Ax [p(x) A g(x)] — [3x p(x) A Tx g(x)],

we find that when the hypothesis 3x [p(x) A g(x)] is true, there is at least one element ¢
in the universe for which the statement p(c) » g(c) is true. By the Rule of Conjunctive
Simplification (see Section 2.3), [p(c) A g(c)] = plc). From the truth of p(c) we have the
true statement Ix p(x). Similarly we obtain 3x g (x), another true statement. So Jx plx) A
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Jx g(x) is a true statement. Since Jx p(x) A Jx g(x) is true whenever Jx [plx) A glx)]
1s true, it follows that

Ax [pix) A g(x)] = [3x pix) A Tx g(x)].

Arguments similar to the one for Example 2.42 provide the logical equivalences and
logical implications listed in Table 2.22. [n addition to those listed in Table 2.22 many other
logical equivalences and logical implications can be derived,

Table 2.22 Logical Equivalences and Logical Implications for Quantified Statements in One
Variable

For a prescribed universe and any open statements p(x), g (x) in the variable x:
Ax [plx) A glx)] = [3x plx) A x glx)]
Jx [plx) v gix)] <= [Tx plx) v Tx glx)]
Vx [plx) A glx)] & [Vx plx) AV glx)]
Vx plx) v ¥x g(x)] = Y [p(x) v g(x)]

Our next example lists several of these and demonstrates how two of them are verified.

Let p(x), g (x), and r (x) denote open statements for a given universe. We find the following

EXAMPLE 2.43 logical equivalences, (Many more are also possible.)

1) Wx [p(x) A (g(x) A r(x))] <= Vx [(p(x) A g(x)) Arix)]
To show that this statement is a logical equivalence we proceed as follows:
For each a in the universe, consider the statements pla) ~ (g{a) » ria)) and
ipla) A gla)) A ria). By the Associative Law for A, we have

pla) A (gla) Aria)) <= (pla) A gla)) Ar(a).

Consequently, for the open statements p(x) ~ (g{x) A r{x)) and
(pilx) A g(x)) A or(x), it follows that

W [p(x) A (g(x) A r(x))] <= ¥x [(p(x) A g(x)) Arx)].

2) 3x [px) = q(x)] & Fx [=p(x) v q(x)]
For each ¢ in the universe, it follows from Example 2.7 that

[pic) = gic)] <= [—plc) v g(c)].

Therefore the statement 3x [p(x) — g(x)] is true (respectively, false) if and only if
the statement 3x [—p(x) v g(x)] is true (respectively, false), so

Ax [pix) = g(x)] = Ix [-plx) v q(x)].

3) Other logical equivalences that we shall often find useful include the following.
a) Yr ——pilx) <= ¥x pix)
b) ¥x —[pix) A glx)] = ¥x [-p(x) v —g(x)]
¢} ¥x —[p(x) v g(x)] <= ¥x [-p(x) A —g(x)]
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4) The results for the logical equivalences in 3(a), (b), and (¢) remain valid when all of
the universal quantifiers are replaced by existential quantifiers.

EXAMPLE 2.44

The results of Tables 2.21 and 2.22 and Examples 2.42 and 2.43 will now help us with
a very important concept. How do we negate quantified statements that involve a single
variable?

Consider the statement Wx p(x). Its negation—namely, —[¥x p(x)] —can be stated
as “It is not the case that for all x, p(x) holds.” This is not a very useful remark, so we
consider —[¥x p(x)] further. When —[Vx p(x)] is true, then ¥x p(x) is false, and so for
some replacement a from the universe —p(a) is true and Ix —pix) is true. Conversely,
whenever the statement 3x —p(x) is true we know that — p(b) is true for some member b of
the universe. Hence Wx p(x) is false and —[Wx p{x)] is true. So the statement —[¥x p(x)]
is true if and only if the statement 3x — p(x) is true. (Similar considerations also tell us that
—[¥x pi(x)] is false if and only if 3x —p(x) is false.)

These observations lead to the following rule for negating the statement Vx p(x);

=[Vx p(x)] <= Jx = p(x).

In a similar way, Table 2.21 shows us that the statement 3x p(x) is true (false) precisely
when the statement Wx —p(x) is false (true). This observation then motivates a rule for
negating the statement Jx p(x):

=[3x p(x)] <= Vx —p(x).

These two rules for negation, and two others that follow from them, are given in Table 2.23
for convenient reference,

Table 2.23 Rules for Negating Statements with One Quanti-
fier

=[¥x p(x)] <= 3x =p(x)
=[3x p(x)] < Vx ~p(x)
=[¥x =p(x)] < Jx == pix) <= Jx pix)
=[3x =p(x)] <= ¥x == p(x) <= ¥x p(x)

We use the rules for negating quantified statements in the following example.

Here we find the negation of two statements, where the universe comprises all of the integers.
1) Let p(x) and g(x) be given by
plx): xisodd glx): x¥ — 1 is even.

The statement “If x is odd, then x® —1 is even” can be symbolized as
Wx [p(x) — gq(x)]. (This is a true statement.)
The negation of this statement is determined as follows:

=[¥x (p(x) = g(x))] & Jx [=(p(x) = g(x))]
= Jx [~(—plx) v g(x))] <= Ix [-—plx) A —g(x)]
= Jx [pl(x) A =glx)]

In words, the negation says, “There exists an integer x such that x is odd and
x? — 1is odd (that is, not even).” (This statement is false.)
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2) As in Example 2.42, let r(x) and s(x) be the open statements
r(x): 2x+1=5 s(x): x*=9,

The quantified statement Jx [r(x) A s(x)] is false because it asserts the existence
of at least one integer a such that 2a +1=5 (@ =2)and a* =9 (a = 3 or =3).
Consequently, its negation

=[3x (rix) As(x))] <= Y [—irix) A s(x))] = Y [=rix) v =s(x)]

is true. This negation may be given in words as “For every integer x, 2x + 1 # 5 or
9 3
x#9,

Because a mathematical statement may involve more than one quantifier, we continue
this section by offering some examples and making some observations on these types of
statements.

Here we have two real variables x, vy, so the universe consists of all real numbers. The
commutative law for the addition of real numbers may be expressed by
ViVy(x+y=yv+x)
This statement may also be given as
VyVx(x +y=y+x).
Likewise, in the case of the multiplication of real numbers, we may write
VaWyi(xy=yx) or Yvy¥x(xy=yx)

These two examples suggest the following general result. If pix, v) is an open statement
in the two variables x, v (with either a prescribed universe for both x and v or one prescribed
universe for x and a second for v), then the statements ¥x ¥y pix, v) and ¥y Vx plx, v)
are logically equivalent — that is, the statement ¥x ¥y pix, v) is true (respectively, false)
if and only if the statement ¥y ¥x p(x. v) is true (respectively, false). Hence

Yo Wy plx, v) <= Yy ¥ plx, v).

When dealing with the associative law for the addition of real numbers, we find that for all
real numbers x, v, and z,

x+(y+D=0+y)+z.
Using universal quantifiers (with the universe of all real numbers), we may express this by
VxVyValx+i(v+2)=i(x+y)+z] or VyVaxVei[x+(v+2)=(x+¥y)+zl

In fact, there are 3! = 6 ways to order these three universal quantifiers, and all six of these
quantified statements are logically equivalent to one another.

This is actually true for all open statements p(x, v, z), and to shorten the notation, one
may write, for example,

Ve, v.z pix,y. 2) =Yy, x, 2 plx,. ¥y, )= V¥, 2, ¥y plx, ¥, 2),

describing the logical equivalence for three of the six statements,
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EXAMPLE 2.47

EXAMPLE 2.48

In Examples 2.45 and 2.46 we encountered quantified statements with two and three
bound variables — each such variable bound by a universal quantifier. Our next example
examines a situation in which there are two bound variables — and this time each of these
variables is bound by an existential quantifier.

For the universe of all integers, consider the true statement “There exist integers x, v such
that x -+ y = 6.” We may represent this in symbolic form by
Jx Ay (x + y = 6).

If we let pix, v) denote the open statement “x + y = 6,” then an equivalent statement can
be given by Iy Ix plx, v).
In general, for any open statement pix, v) and universe(s) prescribed for the vari-
ables x, v,
Jx Iy pix, y) <= Ay 3x p(x, ¥).

Similar results follow for statements involving three or more such quantifiers,

When a statement involves both existential and universal quantifiers, however, we must
be careful about the order in which the quantifiers are written. Example 2.48 illustrates this
case.

We restrict ourselves here to the universe of all integers and let p(x, y) denote the open
statement “x + y = 17."

1) The statement
Vx Iy px, v)

says that “For every integer x, there exists an integer v such that x + v = 17." (We
read the quantifiers from left to right.)

This statement 1s true; once we select any x, the integer v = 17 — x does exist
and x + ¥ = x + (17 — x) = 17. But we realize that each value of x gives rise to a
different value of v.

2) Now consider the statement
Iy Wx plx, v).

This statement is read “There exists an integer v so that for all integers x, x + y =
17." This statement 1s false. Once an integer v is selected, the only value that x can
have (and still satisty x + v = 17)is 17 — v,

If the statement 3y ¥x p(x, y) were true, then every integer (x) would equal
17 — v (for some one fixed y). This says, in effect, that all integers are equal!

Consequently, the statements ¥x 3y p(x, v) and Iy ¥x plx, v) are generally not
logically equivalent.

Translating mathematical statements — be they postulates, definitions, or theorems —
into symbolic form can be helpful for two important reasons.

1) Doing so forces us to be very careful and precise about the meanings of statements,
the meanings of phrases such as “For all x" and “There exists an x,” and the order in
which such phrases appear.
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2) After we translate a mathematical statement into symbolic form, the rules we have
learned should then apply when we want to determine such related statements as the
negation or, if appropriate, the contrapositive, converse, or inverse.

Owr last two examples illustrate this, and in so doing, extend the results in Table 2.23.

Let p(x, v), gix, v), and r(x, v) represent three open statements, with replacements for
the variables x, ¥ chosen from some prescribed universeis). What is the negation of the
following statement?

Vx 3y [(p(x, ¥) Aglx, ¥)) = r(x, y)]
We find that

=[Wx Iy [(plx, v) Agix, ¥)) — rix, v1]]
< Ax [Ty [(p(x, ¥) A gix, ¥)) = rix, V]
< Ix Wy —[(plx, ¥) A gix, ¥)) = r(x, )]
< Ax Wy =[=[pix, ¥v) Agix, v v rix, W]
= Ix Wy [==lp(x, y) A qlx, )] A =r(x, ¥)]
& Ax ¥y [(p(x, ¥) A glx, y)) A=r(x, ¥)]

Now suppose that we are trying to establish the validity of an argument (or a mathematical
theorem) for which

Vx Iy [(p(x, ¥) Agix, ¥)) = r(x, Y]

is the conclusion. Should we want to try to prove the result by the method of Proof by
Contradiction, we would assume as an additional premise the negation of this conclusion.
Consequently, our additional premise would be the statement

Jx Wy [(plx, ¥) A glx, ¥)) A =rix, ¥)].

Finally, we consider how to negate the definition of fimir, a fundamental concept in
calculus,

In calculus, one studies the properties of real-valued functions of a real variable. (Functions
will be examined in Chapter 5 of this text.) Among these properties is the existence of limits,
and one finds the following definition: Let 7 be an open interval' containing the real number
a and suppose the function f is defined throughout [, except possibly at a. We say that f
has the limit L as x approaches a, and write lim,_., f(x) = L, if (and only if'} for every
€ = (thereexistsad = Osothat,forallxin/, (0 < |x —a| <= 8) —= (| f(x) — L| <€). This
can be expressed in symbolic form as
lim fx)=Le2VWe=0 =0 [(0=|x—al <8 —=(flx)—L| <e)].

X—=a

"The concept of an open interval is defined at the end of Section 3.1.
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[Here the universe comprises the real numbers in the open interval [, except possibly a.
Also, the quantifiers Ve = 0 and 3§ = 0 now contain some restrictive information.] Then,
to negate this definition, we do the following (in which certain steps have been combined):

lim f(x) # L
= oVe=0 =0V [(D<|x —al <8) = (| f(x)—L| <e)]]
= Je=0VWi=0Ix[0<|x—al<d) = (| fix)— Ll =€)]
= Fe=0W=0Jx—[-0D=<|x—a|l<8)v(fix)—L]<e)]
= Ae=0Wi=0x[—(0<|x—al<d) A flx)—L| <e)l
= Je=0 =0 x[(0=|x—al <8 Al fix)—L|=¢€)]

Translating into words, we find that lim,_., f(x) # L if (and only if) there exists a
positive (real) number e such that for every positive (real) number 4, there 1s an x in [ such
that0 < |x — a| < & (thatis, x 7 a and its distance from a is less than §) but | fix) — L] = ¢
[that is, the value of f(x) differs from L by at least €].

1. Let pix). gix) denote the following open statements.

r=3 x+ 1is odd

plxy. gix):
If the universe consists of all integers, what are the truth values
of the following statements?
a) g(1) b) —p(3) c) p(7) v g(7)
d) pi3)rgd) e} =(p(—d)vg(-3))
f) =p(—4) »r —g(=3)

2. Let p(x), g(x) be defined as in Exercise 1. Let r{x) be the
open statement “x = (." Once again the universe comprises all
integers.

a) Determine the truth values of the following statements.
i) p(3) v [g(3) v ~r(3)]
i) p(2) = [q(2) — r(2)]
iii) [p(2) Ag(2)]— r(2)
iv) pll) — [—g(—1) + ril}]
b) Determine all values of x for which
[plx) Agix)] A orix) results in a true statement.

3. Let pix) be the open statement “x® = 2x,” where the
universe comprises all integers. Determine whether each of
the following statements is true or false.

a) pi(l) b} pil) c) pi2)
d) p(—-2) e) Ix pix) f) ¥r pix)

4. Consider the universe of all polygons with three or four
sides, and define the following open statements for this uni-
VEISE,

alx):  all interior angles of x are equal
e(x):  xis an equilateral triangle
hix): all sides of x are equal

i(x): x is an isosceles triangle
plx):
FIESE

rix): xisarectangle

x has an interior angle that exceeds 180°

x is a quadrilateral

s{x):  x 18 asquare
tix): xisatriangle

Translate each of the following statements into an English sen-
tence, and determine whether the statement is true or false.

a) Wx [gix) ¥ tix)] b} Wx [i(x) — elx)]
¢} Jx [tie) A pix)) d) W [(alx) Ar(x)) < elx)]
e) Ax [gix) » —rix)] £} Jx [rix) A —s(x)]
g) Vx [h(x) — e(x)] h) ¥x [t(x) = —p(x)]
i) W [5(x) = (aix) A hi(x))]
B VW [t(x) — (alx) < hix))]
5. Professor Carlson’s class in mechanics is comprised of 29
students of which exactly
1) three physics majors are juniors;
2) two electrical engineering majors are juniors;
3) four mathematics majors are juniors;
4) twelve physics majors are seniors;
5) four electrical engineering majors are seniors,

6) two clectrical engineering majors are graduate students;
and

71 two mathematics majors are graduate students.

Consider the following open statements.

Student x is in the class (that is,
Professor Carlson's mechanics class
as already described).

clx):



Jix): Student x is a junior,

#(x):  Student x is a senior.

glx):  Student x is a graduate student.

pix):  Swdent x is a physics major.

e(x):  Student x is an electrical engincering major.
mix):  Student x is a mathematics major.

Write each of the following statements in terms of quantifiers
and the open statements c(x), fix), six) glx), pix). elx), and
mix), and determine whether the given statement is true or false,
Here the universe comprises all of the 12,500 students enrolled
at the university where Professor Carlson teaches. Furthermaore,
at this university each student has only one major.

a) There is a mathematics major in the class whois a junior,

b} There is a senior in the class who 15 not a mathematics
major.

¢} Every student in the class is majoring in mathematics or
physics.

d) No graduate student in the class is a physics major.

€) Every senior in the class is majoring in either physics or
electrical engineering.

6. Let pix, v), g(x, ¥v) denote the following open statements.
pix, ) glx,y): x+2<y

If the universe for each of x, v consists of all real numbers,
determine the truth value for each of the following statements,

a) p(2,4) b) g(1, 7)
¢) p(—3,8) Aq(l,3) d p(L Y v—g(-2.-3
€) p(2.2) = g(1, 1) £) p(l,2) « —g(1,2)

7. For the universe of all integers, let pix), gix), rix), s(x),
and ¢({x) be the following open statements.

2
=y

plx) x=0
glx): xiseven
rix): x is a perfect square
s{x):  x s (exactly) divisible by 4
t{x):  xis (exactly) divisible by 5
a) Write the following statements in symbolic form.
i) At least one integer is even,
ii) There exists a positive integer that is even.
iii) If x is even, then x is not divisible by 5,
iv) Noeven integer is divisible by 5.
v) There exists an even integer divisible by 5.
vi) If x is even and x is a perfect square, then x is
divisible by 4.
b) Determine whether each of the six statements in

part (&) is true or false. For each false statement, provide a
counterexample.

¢) Express each of the following symbolic representations
in words.
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i) Wx [rix)— plx)] 00 W [s(x) — glx)]
iii) Wx [s(x) — —eix)]  iv) x [six) A —rix)]
d) Provide a counterexample for each false statement in
part (c).
8. Let pix). g(x), and r(x) denote the following open
statements,

plx) M oBx4+15=0
glx): xisodd
rixh; x=10

For the universe of all integers, determine the truth or falsity of
each of the following statements. If a statement is false, give a
counterexample.
a) ¥x [p(x) = g(x)] b) ¥z [g(x) = pix)]

¢) 3x [plx) — g(x)] d) 3x [g(x) — plx)]

e) x [rlx) — plx)] ) Vx [=gix) — =pix)]

g) Ax [plx) = (g(x) Arix))]

h) ¥x [(plx) v g(x)) — r(x)]
9. Let pix), g(x), and r{x) be the following open statements.

plx): X =Tx+10=0
glx): x*—=2x—3=0
rix): x=0

a) Determine the truth or falsity of the following state-
ments, where the universe is all integers. If a statement is
false, provide a counterexample or explanation.

i) Wx[pix) = =rix)) i) W [gix) — rix))
iii) Jx [gix) — rix)] iv) Jx [pix) — rix)]
b} Find the answers (o part (a) when the universe consists
of all positive integers.
¢} Find the answers to part (a) when the universe contains
only the integers 2 and 5.
10. For the following program segment, m and n are integer
variables. The variable A is a two-dimensional array A[l, 1],
All, 2], ... AL 200, ..., A[10, 1), ..., A[10, 20], with 10
rows (indexed from 1 to 10} and 20 columns (indexed from 1
to 200,

form:=1tolldde
fornm:=1to 20 do
Alm,n] :=m+3 *n

Write the following statements in symbolic form. ( The universe
for the variable m contains only the integers from 1 to 10 in-
clusive; for n the universe consists of the integers from 1 1o 20
inclusive.)

a) All entries of A are positive.
b) All entries of A are positive and less than or equal to 70.
¢) Some of the entries of A4 exceed 60,
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d)} The entries in each row of A are sorted into (strictly)
ascending order.

e) The entries in each column of A are sorted into (strictly)
ascending order.
f) The entries in the first three rows of A are distinct.

11. Identify the bound variables and the free variables in each
of the following expressions (or statements). In both cases the
universe comprises all real numbers.
a) ¥y 3z [cos(x + y) = sin(z — x]]
b) 3x 3y x>~ y? =)
12. a) Let p(x, v) denote the open statement “x divides y,”
where the universe for each of the variables x, y comprises
all integers. (In this context “divides” means “exactly di-
vides™ or “divides evenly.”) Determine the truth value of
cach of the following statements; if a quantified statement
is false, provide an explanation or a counterexample.

i) p3.7 ii) p(3.27)
iif) ¥y p(l, ¥) iv) ¥x pix, )
vl ¥ pix, x) vi) Wy Jx plx_ y)

vii) Jv ¥x pix, v)
viil) ¥ Vy [(p(x, y) A ply. x)) = (x = y)]
b) Determine which of the eight statements in part (a) will
change in truth value if the universe for each of the variables
x, ¥ were restricted to just the positive integers.
¢) Determine the truth value of each of the following state-
ments. If the statement is false, provide an explanation or
a counterexample, [The universe for each of x, v i as in
part (h).]
i) Vx 3y plx, ¥) i) ¥y 3x plx, y)
iii) 3x ¥y pix, ¥v) ivl Jv¥x pix, v)
13. Suppose that p(x, ¥) is an open statement where the uni-
verse for each of x, y consists of only three integers: 2. 3, 5.
Then the quantified statement Iy pi2, v) is logically equiva-
lent to pi2, 2) v pi2, 3) v p(2, 5). The quantified statement
Jx ¥y plx, v) is logically equivalent to [p(2, 2) ~ p(2, 3) A
P2, 50 v [p(3, 2) A p(3,3) A p(3,5)) v [p(5, 2) A pl3, 3)
# p(3, 5)]. Use conjunctions and/or disjunctions to express the
following statements without quantifiers.

a) Yo p(x.3) b)) 3x 3y ple,¥)  e) ¥y Ix pix, ¥)
14. Let pin), g(n) represent the open statements
plnl gin): n’isodd

for the universe of all integers. Which of the following state-
ments are logically equivalent to each other?

n s odd

a) If the square of an integer is odd, then the integer is odd,
b} ¥ [pin) is necessary for g(n]

¢) The square of an odd integer is odd.

d) There are some integers whose squares are odd.

¢) Given an integer whose square is odd, that integer is
likewise odd.

) ¥n [=p(x) = —g(n)]

g) ¥n [p(n) is sufficient for g(n)]
15. For each of the following pairs of stalements determing
whether the proposed negation is correct. If correct, determine
which is true: the original statement or the proposed negation.
If the proposed negation is wrong, write a correct version of the
negation and then determine whether the original statement or
your correcied version of the negation is true.

a) Statement: For all real numbers x, v, if = yz, then
=y

Proposed negation: There exist real numbers x, y such that
=y butx < v,

b) Statement: There exist real numbers x, v such that x and
y are rational but x + y is irrational.

Proposed negation: For all real numbers x, y, if x 4+ y is
rational, then each of x, y is rational.

¢) Statement: For all real numbers x, if & is not 0, then x
has a muluplicative inverse,

Proposed negation: There exists a nonzero real number that
does not have a multiplicative inverse.

d) Statement: There exist odd integers whose product is
odd.
Proposed negation: The product of any two odd integers is
odd.
16. Write the negation of cach of the following statements as
an English sentence — without symbolic notation. (Here the
universe consists of all the students at the university where
Professor Lenhart teaches,)
a) Every student in Professor Lenhart’s C++ class is
majoring in computer science or mathematics.
b) At least one student in Professor Lenhart’s C++ class is
a history major.
17. Write the negation of each of the following true statements.
For parts (a) and (b) the universe consists of all integers; for
parts (c) and (d) the universe comprises all real numbers.
a) For all integers n, if n is not (exactly) divisible by 2,
then i is odd.

b) If k, m, n are any integers where k — m and m — n are
odd, then & — n is even.

¢) If x is a real number where x° = 16, then x = =4 or
x =4,

d) Forall real numbers x, if |x — 3| = 7, then —4 =< x = 10.
18. Negate and simplify each of the following.

a) Ax [plx) v g(x)] by W [pix) A =gix)]

€) Vx [p(x) — g(x]]

d) 3x [(p(x) v g(x)) = r(x)]

19. For each of the following statements state the converse,
inverse, and contrapositive. Also determine the truth value for
each given statement, as well as the truth values for its converse,



inverse, and contrapositive. {Here “divides” means “exactly
divides.™)

a) [The universe comprises all positive integers. ]

If m = n, then m* = n°,

b) [The universe comprises all integers. ]

Ifa = b, then a® = b,

¢) [The universe comprises all integers. )

If m divides n and n divides p, then m divides p.

d) [The universe consists of all real numbers. )

W [(x = 3) = (x? = 9]

¢) [The universe consists of all real numbers. )

For all real numbers x, if #® +4x — 21 = 0, thenx = 3 or

x = =7,
20. Rewrite each of the following statements in the if-then form.
Then write the converse, inverse, and contrapositive of your im-
plication. For each result in parts (a) and (¢) give the truth value
for the implication and the truth values for its converse, inverse,
and contrapositive. [In part (a) “divisibility” requires a remain-
der of 0]

a) [The universe comprises all positive integers. ]

Divisibility by 21 is a sufficient condition for divisibility

by 7.

b} [The universe comprises all snakes presently slithering

about the jungles of Asia.]

Being a cobra is a sufficient condition for a snake to be

dangerous,

¢) [The universe consists of all complex numbers.
For every complex number z. z being real is necessary for
7% to be real.

21, For the following statements the universe comprises all
nonzero integers. Determine the truth value of each statement.

a) Ix Iy [xv = 1] by Jx ¥y [xy = 1]
¢) ¥x Iy [xy = 1]

d) x Iv[(2x + vy =5) A (x — 3y = —§)]

) Ix Iy [(3x — vy = T) A (2x + 4y = 3)]

22, Answer Exercise 21 for the universe of all nonzero real
numbers.

23, In the arithmetic of real numbers, there is a real num-
ber, namely 0, called the identity of addition because a + 0 =
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0+ a = a for every real number a. This may be expressed in
symbolic form by

A:Yala+z=z+a=al
(We agree that the universe comprises all real numbers.)

a) In conjunction with the existence of an additive iden-
tity is the existence of additive inverses. Write a quantified
statement that expresses “Every real number has an addi-
tive inverse.” (Do not use the minus sign anywhere in your
statement. )

b} Write a quantified statement dealing with the existence
of a multiplicative identity for the arithmetic of real num-
bers,

¢) Write a quantified statement covering the existence of
multiplicative inverses for the nonzero real numbers, (Do
not use the exponent — 1 anywhere in your statement.)
d)} Do the results in parts (b) and (c) change in any way
when the universe is restricted to the integers?
24. Consider the quantified statement Wx 3y [x + v = 17]. De-
termine whether this statement is true or false for each of the
following universes: (a) the integers; (b) the positive integers;
() the integers for x, the positive integers for y: (d) the positive
integers for x, the integers for v

25. Let the universe for the variables in the following state-
ments consist of all real numbers, In each case negate and sim-
plify the given statement.

a) Yx Wy [(x = v} = (x — y = 0)]
b) Yx Wy [(x <y} — Jz(x <z = ¥)]
c) Ve Wy [(|x] = |y|) = (¥ = £ x)]
26. In calculus the definition of the limit L of a sequence of
real numbers ry, 3, 3, .. . can be given as

limr, =L
if (and only if ) for every € = () there exists a positive integer k
so that for all integers n, if = & then |r, — L] = €.
In symbolic form this can be expressed as
limr,=L+<¥e=03k=0%[(n=k)—|r, —L| <e¢]
R—eo0

Express lim r, # L in symbolic form.

"=*00

In this section we shall combine some of the ideas we have already studied in the prior two
sections. Although Section 2.3 introduced rules and methods for establishing the validity
of an argument, unfortunately the arguments presented there seemed to have little to do
with anything mathematical. [The rare exceptions are in Example 2.23 and the erroneous
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EXAMPLE 2.51

argument in part (b) of the material preceding Example 2.26.] Most of the arguments dealt
with certain individuals and predicaments they were either in or about to face.

But now that we have learned some of the properties of quantifiers and quantified state-
ments, we are better equipped to handle arguments that will help us to prove mathematical
theorems. Before dealing with theorems, however, we shall consider how mathematical
definitions are traditionally presented in scientific writing.

Following Example 2.3 in Section 2.1, the discussion concerned how an implication
might be used in place of a biconditional in everyday conversation. But in scientific writing,
it was noted, we should avoid any and all situations where an ambiguous interpretation
might come about — in particular, an implication should not be used when a biconditional
is intended. However, there is one major exception to that rule and it concerns the way that
mathematical definitions are traditionally presented in mathematics textbooks and other
scientific literature. Example 2.51 demonstrates this exception.

a) Let us start with the universe of all quadrilaterals in the plane and try to identify those
that are called rectangles.
One person might say that

“If a quadrilateral is a rectangle then it has four equal angles.”
Another individual might identify these special quadrilaterals by observing that
“If a quadrilateral has four equal angles, then it is a rectangle.”

{Here both people are making implicitly quantified statements, where the quantifier is
universal.)
Given the open statements

plx):  xis arectangle gix):  x has four equal angles,
we can express what the first person says as
Vx [px) — q(x)],
while for the second person we would write
Vx [g(x) = pix)].

So which of the preceding (quantified) statements identifies or defines a rectangle?
Perhaps we feel that they both do. But how can that be, since one statement is the
converse of the other and, in general, the converse of an implication is not logically
equivalent to the implication,

Here the reader must consider what is intended — not just what each of the two
people has said, or the symbolic expressions we have written to represent these state-
ments. [n this situation each person is using an implication with the meaning of a
biconditional. They are both intending (though not stating)

Vx [p(x) « g(x)].
—that 1s, each is really telling us that
A quadrilateral is a rectangle if and only if it has four equal angles.”

b) Within the universe of all integers we can distinguish the even integers by means of a
certain property and so we may define them as follows:

For every integer n we call n even if it is divisible by 2.
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(By the expression “divisible by 2" we mean “exactly divisible by 2" — that is, there
is no remainder upon division of the dividend n by the divisor 2.)
If we consider the open statements

p(n):  nisaneven integer gln): nisdivisible by 2,

then it appears that the preceding definition may be written symbolically as
Vin [g(n) — p(n)].

After all, the given quantified statement (in the preceding definition) is an implication.
However, the situation here is similar to that given in part (a). What appears to be
stated is not what is intended. The intention is for the reader to interpret the given
definition as

Vn [g(n) < p(n)],
that is,
“For every integer n, we call n even if and only if n is divisible by 2.”

i Note that the open statement “n is divisible by 2" can also be expressed by the open
statement “n = 2k, for some integer £." Don’t be misled here by the presence of
the quantifier “for some integer k" — for the expression 3k [n = 2k] is still an open
statement because n remains a free variable.)

So now we see how quantifiers may enter into the way we state mathematical defini-
tions — and that the traditional way in which such a definition appears is as an implication,
But beware and remember: It is enly in definitions that an implication can be (mis)read and
correctly interpreted as a biconditional.

Note how we defined the limit concept in Example 2.50. There we wrote “if (and only
if )" since we wanted to let the reader know our intention. Now we are free to replace “if
(and only if )" by simply “if."

Having settled our discussion on the nature of mathematical definitions, we continue
now with an investigation of arguments involving quantified statements.

Suppose that we start with the universe that comprises only the 13 integers 2, 4,6, 8, ...,
24, 26. Then we can establish the statement:
For all n (meaning n = 2, 4, 6, ..., 26),

we can write n as the sum of at most three perfect squares.

The results in Table 2.24 provide a case-by-case verification showing the given (quanti-
fied) statement to be true. (We might call this statement a theorem.)

Table 2.24
2=1+1 N=9+1 0W=16+4
4=4 12=444+4 2=94+9+4
6=44+1+1 14=04+441 4=16+4+4
B=4+4 16 =16 W=25+1
I8=16+1+41
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This exhaustive listing is an example of a proof using the technique we call, rather
appropriately, the method of exhaustion. This method is reasonable when we are dealing
with a fairly small universe. If we are confronted with a situation in which the universe
is larger but within the range of a computer that is available to us, then we might write a
program to check all of the individual cases.

(Note that for certain cases in Table 2.24 more than one answer may be possible. For
example, we could have written 18 = 9 + 9 and 26 = 16 + 9 + 1. But this is all right. We
were told that each positive even integer less than or equal to 26 could be written as the
sum of one, two, or three perfect squares. We were not told that each such representation
had to be unique, so more than one possibility could occur. What we had to check in each
case was that there was at least one possibility.)

In the previous example we mentioned the word theorem. We also found this term used in
Chapter 1 — for example, in results like the binomial theorem and the multinomial theorem
where we were introduced to certain types of enumeration problems. Without getting overly
technical, we shall consider theorems to be statements of mathematical interest, statements
that are known to be true. Sometimes the term theorem is used only to describe major
results that have many and varied consequences. Certain of these consequences that follow
rather immediately from a theorem are termed corollaries (as in the case of Corollary 1.1
in Section 1.3). In this text, however, we shall not be so particular in our use of the word
theorem,

Example 2.52 is a nice starting point to examine the proof of a quantified statement.
Unfortunately, a great number of mathematical statements and theorems often deal with
universes that do not lend themselves to the method of exhaustion. When faced with es-
tablishing or proving a result for all integers, for example, or for all real numbers, then we
cannot use a case-by-case method like the one in Example 2.52. So what can we do?

We start by considering the following rule,

The Rule of Universal Specification: If an open statement becomes true for all
replacements by the members in a given universe, then that open statement is true for
each specific individual member in that universe, (A bit more symbolically —if p(x)
is an open statement for a given universe, and if ¥x p(x) is true, then p{a) is true for
each a in the universe.)

This rule indicates that the truth of an open statement in one particular instance follows
(as a special case) from the more general (for the entire universe) truth of that universally
quantified open statement. The following examples will show us how to apply this idea.

a) For the universe of all people, consider the open statements

mix): x 15 a mathematics professor clx):  x has studied calculus,
Now consider the following argument,

All mathematics professors have studied calculus.
Leona is a mathematics professor.

Therefore Leona has studied calculus,
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If we let | represent this particular woman (in our universe) named Leona, then we
can rewrite this argument in symbolic form as

e [mix) — c(x)]
mil)
Soell)

Here the two statements above the line are the premises of the argument, and the
statement ¢({) below the line is its conclusion. This is comparable to what we saw in
Section 2.3, except now we have a premise that is a universally quantified statement.
As was the case in Section 2.3, the premises are all assumed to be true and we musit
try to establish that the conclusion is also true under these circumstances. Now, to
establish the validity of the given argument, we proceed as follows.

Steps Reasons

1) ¥ [mix) — c(x)] Premise

2y mil) Premise

3) mil) — el Step (1) and the Rule of Universal Specification
4) el Steps (2) and (3) and the Rule of Detachment

Note that the statements in steps (2) and (3) are not quantified statements. They are
the types of statements we studied earlier in the chapter. In particular, we can apply
the rules of inference we learned in Section 2.3 1o these two statements to deduce the
conclusion in step (4).

We see here that the Rule of Universal Specification enables us to take a universally
quantified premise and deduce from it an ordinary statement (that is, one that is not
quantified). This (ordinary) statement — namely, m(l) — ¢(l) —is one specific true
instance of the universally quantified true premise ¥x [mix) — c(x)].

b) For an example of a more mathematical nature let us consider the universe of all
triangles in the plane in conjunction with the open statements

p(t): ¢ has two sides of equal length.
g(t):  tis an isosceles triangle.

ri(t): t has two angles of equal measure.

Let us also focus our attention on one specific triangle with no two angles of equal
measure. This triangle will be called triangle XY Z and will be designated by ¢. Then
we find that the argument

In triangle XY Z there is no pair of angles of equal

Mmeasure, =ric)

If a triangle has two sides of equal length, then it is

isosceles. Vi [p(r) — q(0)]
If a triangle is isosceles, then it has two angles of equal

measure. Vit [g(r) — rir)]
Therefore triangle X¥ Z has no two sides of equal length. Jompic)

is a valid one — as evidenced by the following,
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Steps Reasons

1) ¥ [p(t) — gin)] Premise

2) pic) = gic) Step (1) and the Rule of Universal Specification
3 Vi lglt) — rit)] Premise

4) gic) — ric) Step (3) and the Rule of Universal Specification
5) pic) = ric) Steps (2) and (4) and the Law of the Syllogism
6) —ric) Premise

7 co—ple) Steps (5) and (6) and Modus Tollens

Once again we see how the Rule of Universal Specification helps us. Here it has
taken the universally quantified statements at steps (1) and (3) and has provided us
with the (ordinary) statements at steps (2) and (4), respectively. Then at this point we
were able to apply the rules of inference we learned in Section 2.3 (namely, the Law
of the Syllogism and Modus Tollens) to derive the conclusion — p(c) in step (7).

¢) Now for one last argument to drive the point home! Here we'll consider the universe

to be made up of the entire student body at a particular college. One specific student,
Mary Gusberti, will be designated by m.
For this universe and the open statements
Jlx):  xisajunior s(x):  xis asenior
plx):  x is enrolled in a physical education class

we consider the argument;

No junior or senior is enrolled in a physical education class,
Mary Gusberti is enrolled in a physical education class.
Therefore Mary Gusberti is not a senior.

In symbolic form this argument becomes

Vx [(j(x) v 5(x)) = =p(x)]
pint)
coos(m)

Now the following steps (and reasons) establish the validity of this argument.

Steps Reasons

1) ¥x [(j(x) v s(x)) = =p(x)] Premise

2) pim) Premise

3) (j(m) v s(m)) —= —=pim) Step (1) and the Rule of Universal
Specification

4) pim) — —(j(m) v s(m)) Step (3), (g — t) = (=t — —g), and the
Law of Double Negation

5) pim) = (—jim) A =s(m)) Step (4) and DeMorgan's Law

6) —ji(m) A —s(m) Steps (2) and (5) and the Rule of
Detachment (or Modus Ponens)

Ty o) Step (6) and the Rule of Conjunctive
Simplification

In Example 2.53 we have had our first opportunity to apply the Rule of Universal Speci-
fication. Using the rule in conjunction with Modus Ponens {(or the Rule of Detachment) and
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Modus Tollens, we are able to state the following corresponding analogs, each of which
involves a universally quantified premise. In either case we consider a fixed universe that
includes a specific member ¢ and make use of the open statements p(x), g(x) defined for
this universe.

(Iy  ¥x[p(x)— qlx)] 2y Vx[p(x)— qlx)]
pic) =g (c)
C.glc) Somple)

These two valid arguments are presented here for the same reason we presented them for the
rules of inference — Modus Ponens and Modus Tollens — in Section 2.3 (in the discussion
between Examples 2.25 and 2.26). We want to examing some possible errors that may arise
when the results in (1) and (2) are not used correctly.

Let us start with the universe of all polygons in the plane. Within this universe we shall
let ¢ denote one specific polygon — the quadrilateral £EFGH, where the measure of angle
E is 91°. For the open statements

pix):  xisasquare glx):  x has four sides,

the following argument is invalid.
1) All squares have four sides.
Quadrilateral EFGH has four sides.
Therefore quadrilateral EFGH is a square.
In symbolic form this argument translates into
(1") Vx [p(x) = g(x)]
g(c)
- ple)

Unfortunately, although the premises are true, the conclusion is false. (For a square has no
angle of measure 91°.) We admit that there might be some confusion between this argument
and the valid one in (1) above. For when we apply the Rule of Universal Specification to
the quantified premise in (1"), in this instance we arrive at the invalid argument

plc) = g(c)
glc)
. ple)
And here, as in Section 2.3, the error in reasoning lies in our attempt 1o argue by the converse.

A second invalid argument — from the misuse of argument (2) above —can also be
given, as shown in the following.

2" All squares have four sides.
Quadrilateral EFGH is not a square.
Therefore quadrilateral EFGH does not have four sides.
Translating (2') into symbolic form results in
(2") Vx [p(x) = g(x)]
—plc)
. —g{c)
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This time the Rule of Universal Specification leads us to

plc) — g(c)
=pic)

=g ()

where the fallacy arises because we are trying to argue by the inverse.

And now let us look back at the three parts of Example 2.53. Although the arguments
presented there involved premises that were universally quantified statements, there was
never any instance where a universally quantified statement appeared in the conclusion. We
now want to remedy this situation, since many theorems in mathematics have the form of
a universally quantified statement. To do so we need the following considerations.

Start with a given universe and the open statement p(x). To establish the truth of the
statement Wx p(x), we must establish the truth of p(c) for each member ¢ in the given
universe. But if the universe has many members or, for example, contains all the positive
integers, then this exhaustive, if not exhausting, task of validating the truth of each p(c)
becomes difficult, if not impossible. To get around this situation we shall prove that p(c)
is true — but now we do it for the case where ¢ denotes a specific but arbitrarily chosen
member from the prescribed universe.

Should the preceding open statement p(x) have the form g(x) — r(x), for open state-
ments g(x) and r(x), then we shall assume the truth of g(c) as an additional premise and try
to deduce the truth of r(c) — by using definitions, axioms, previously proven theorems, and
the logical principles we have studied. For when ¢ (c) is false, the implication g (c) — ric)
is true, regardless of the truth value of r(c).

The reason that the element ¢ must be arbitrary (or generic) is to make sure that what
we do and prove about ¢ is applicable for all the other elements in the universe. If we are
dealing with the universe of all integers, for example, we cannot choose ¢ in an arbitrary
manner by selecting ¢ as 4, or by selecting ¢ as an even integer. In general, we cannot
make any assumptions about our choice for ¢ unless these assumptions are valid for all the
other elements of the universe. The word generic is applied to the element ¢ here because it
indicates that our choice (for ¢) must share all of the commeon characteristics of the elements
for the given universe.

The principle we have described in the preceding three paragraphs is named and sum-
marized as follows.

The Rule of Universal Generalization: If an open statement p(x) is proved to be
true when x is replaced by any arbitrarily chosen element ¢ from our universe, then the
universally guantified statement ¥x p(x) is true. Furthermore, the rule extends beyond
a single variable. So if, for example, we have an open statement g(x, y) that is proved
to be true when x and y are replaced by arbitrarily chosen elements from the same
unijverse, or their own respective universes, then the universally quantified statement
¥ ¥y g(x, y) [or, ¥x,y g(x, )] is true. Similar results hold for the cases of three or
more variables, i

Before we demonstrate the use of this rule in any examples, we wish to look back at
part (1) of Example 2.43 in Section 2.4. It turns out that the explanation given there to
establish that

Wx [pix) A (g(x) Arix)] < Yx [(p(x) A g(x)) Arix)]
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anticipated what we have now described in detail as the Rules of Universal Specification
and Universal Generalization.

Mow we'll turn to an example which is sirictly symbolic. This example provides an
opportunity to apply the Rule of Universal Generalization.

Let p(x), g(x), and r(x) be open statements that are defined for a given universe, We show
that the argument

Yx [plx) — glx)]
Yx [g(x) — rix)]

S ¥ [plx) = rix)]

is valid by considering the following.

Steps Reasons

1) Vx [(plx) — gqlx)] Premise

2) ple)—gle) Step (1) and the Rule of Universal Specification
3) Ve lglx) = r(x)] Premise

4) gic) — ric) Step (3) and the Rule of Universal Specification
5) plc)y—ric) Steps (2) and (4) and the Law of the Syllogism

6) . ¥ [p(x)— rix)] Step (5) and the Rule of Universal Generalization

Here the element ¢ introduced in steps (2) and (4) is the same specific but arbitrarily
chosen element from the universe, Since this element ¢ has no special or distinguishing
properties but does share all of the commeon features of every other element in this universe,
we can use the Rule of Universal Generalization to go from step (5) to step (6).

And so at last we have dealt with a valid argument where a universally quantified state-
ment appears as the conclusion, as well as among the premises.

The question that now may be at the back of the reader’s mind is one of practicality.
Namely, when would we ever need to use the argument that we validated in Example 2.547
We may find that we have already used it (perhaps, unknowingly) in earlier algebra and
geometry courses, as we demonstrate in the following example.

a) For the universe of all real numbers, consider the open statements
plx): 3x=-7=20 glx): 3x=27 rix): x=29,

The following solution of an algebraic equation parallels the valid argument from
Example 2.54,

1) If 3x — 7 =20, then 3x = 27. Wx [plx) — g(x)]
2) If3x =27, thenx = 9. Y [glx) = rix)]
3) Therefore, if 3x — 7 = 20, then x = 9. ¥ [plx) = rix)]

b) When we dealt with the universe of all quadrilaterals in plane geometry, we may have
found ourselves relating something like this:

“Since every square is a rectangle, and every rectangle
is a parallelogram, it follows that every square is a parallelogram.”

In this case we are using the argument in Example 2.54 for the open statements

plx):  xis asquare gix):  xis arectangle rix): xisa parallelogram,
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Now we continue with one more argument to validate.

l_ EXAMPLE 2.56 J The steps and reasons needed to establish the validity of the argument

Vx [plx) v g(x)]
Vx [(—plx) A g(x)) — r(x)]
SV [=r(x) = plx)]

are given as follows. [Here the element ¢ is in the universe assigned for the argument. Also,
since the conclusion is a universally quantified implication, we can assume —r({c) as an
additional premise — as was mentioned earlier when the Rule of Universal Generalization
was first introduced. ]

Steps Reasons
1) Yx [pix) v glx)] Premise
2) ple) v gle) Step (1) and the Rule of Universal
Specification
3) ¥x [(—plx) Agix)) — rix)] Premise
d) [=ple) ~gic)] = rie) Step (3) and the Rule of Universal
Specification
5) =ric) = =[=pic) ~gic)] Step(d)and s — 1 &= =1 — —u
6) —ric) = [p(c) v =g(c)] Step (5), DeMorgan’s Law, and the Law of
Double Negation
T} =ric) Premise (assumed)
8) plc) v —glc) Steps (7) and (6) and Modus Ponens
9 [pic) v glc)] ~ [plc) v —gic)] Steps (2) and (8) and the Rule of Conjunction
10) pic) v [gle) A —gie)] Step (9) and the Distributive Law of v over A
11) pic) Step (10), gic) A —gic) < Fp, and
plel v Fy &= pic)
12) . ¥x [=r(x) — pix)] Steps (7) and (11) and the Rule of Universal
Generalization

Before going on we want to point out a convention that the reader may not like but
will have to get used to. It concerns our coverage of the Rules of Universal Specification
and Universal Generalization. In the first case we started with the statement ¥x p{x) and
then dealt with p(e) for some specific element ¢ in our universe. For the Rule of Universal
Generalization we obtained the truth of ¥x p(x) from that of p(c), where ¢ was arbitrarily
selected from the universe. Unfortunately, we’ll often find ourselves using the letter x
instead of ¢ to denote the element —but as long as we understand what is happening we
shall soon find the convention easy enough to work with.

The results of Example 2.54 and especially Example 2.56 lead us to believe that we can
use universally quantified statements and the rules of inference — including the Rules of
Universal Specification and Universal Generalization — to formalize and prove a variety of
arguments and, hopefully, theorems. When we do so it appears that the validation of some
rather short arguments requires quite a number of steps, because we have been very metic-
ulous and included all the steps and reasons — we left little, if anything, to the imagination,
The reader should rest assured that when we start to prove mathematical theorems, we shall
present the proofs in the more conventional paragraph style. We shall no longer mention
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each and every application of the laws of logic and the other tautologies or the rules of
inference. On occasion we may single out a certain rule of inference, but our attention will
be primarily directed to the use of definitions, mathematical axioms and principles (other
than those we have found in our study of logic), and other (earlier) theorems we have been
able to prove. Why then have we been learning all of this material on validating arguments?
Because it will provide us with a framework to fall back on whenever we doubt whether
a given attempt at a proof really does the job. If in doubt, we have our study of logic to
supply us with a somewhat mechanical but strictly objective means to help us decide.
And now we present paragraph-style proofs for some results about the integers. (These
results may be considered rather obvious to us —in fact, we may find we have already
seen and used some of them. But they provide an excellent setting for writing some simple
proofs.) The proofs we shall presently introduce use the following ideas, which we now
formally define. [The first idea was mentioned earlier in part (b) of Example 2.51.]

Definition 2.8 Let n be an integer. We call n even if n 1s divisible by 2 —that is, if there exists an integer
r so that n = 2r. If 1 is not even, then we call » odd and find for this case that there exists
an integer s where n = 25 + 1.
THEOREM 2.2 For all integers k and [, if k, [ are both odd, then k + I is even.

Proof: In this proof we shall number the steps so that we may refer to them for some later
remarks. After this we shall no longer number the steps.

1) Since k and [ are odd, we may write k = 2a + 1 and [ = 2b + 1, for some integers
@, b. This is due to Definition 2.8,
2) Then

k+l=Qa+ 1)+ @2b+1)=20a+b+1),

by virtue of the Commutative and Associative Laws of Addition and the Distributive
Law of Multiplication over Addition — all of which hold for integers.

3) Since a, b are integers, @ + b + 1 = ¢ is an integer; with & + [ = 2¢, it follows from
Definition 2.8 that k + [ is even,

Remarks

1) In step (1) of the preceding proof k and | were chosen in an arbitrary manner, so we
know by the Rule of Universal Generalization that the result obtained is true for all
odd integers.

2) Although we may not realize it, we are using the Rule of Universal Specification

(twice) in step (1). The first argument implicit in this step reads as follows.
i) If n is an odd integer, then n = 2r + 1 for some integer r.

ii) The integer k is a specific (but arbitrarily chosen) odd integer.
iii) Therefore we may write k = 2a + 1 for some (specific) integer a.

3) In step (1) we do not have k= 2a + 1 and [ = 2a + 1. Since k, | are arbitrarily
chosen, it may be the case that & = [ —and when this happens we have 2a + 1 =
k =1=2b+ 1, from which it follows that &« = b. [Since k may not equal I, it follows
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EXAMPLE 2.57

that (k — 1)/2 = a may not equal & = (I — 1)/2. Thus we should use the different
variables a and b.]

Before we proceed with another theorem — written in the more conventional manner —
let us examine the following.

Consider the following statement for the universe of integers,
If n is an integer, then nt=n—or ¥n[n?=n).

Now forn = 0 it is true that n* = (* =0 =n. And if n = 1, it is also true that n? = 12 =
I = n. However, we cannot conclude n* = n for every integer n. The Rule of Universal
Generalization does not apply here, for we cannot consider the choice of 0 {or 1) as an
arbitrarily chosen integer. If n = 2, we have n? = 4 # 2 = n, and this one counterexample
is enough to tell us that the given statement is false. However, either replacement — namely,
n = 0orn — 1 —is enough to establish the truth of the statement:

z

For some integer n, n* = n—or, 3n [n* = n|.

We close — at last — with three results to demonstrate how we shall write proofs through-
out the remainder of the text.

THEOREM 2.3

For all integers k and [, if k and { are both odd, then their product kI is also odd.

Proof: Since k& and | are both odd, we may write k = 2a + 1 and [ = 2b + 1, for some
integers a and b —because of Definition 2.8. Then the product kI = (2a + 1)(2b + 1) =
dab +2a + 2b + 1 = 2(2ab + a + b) + 1, where 2ab + a + b is an integer. Therefore, by
Definition 2.8 once again, it follows that &/ is odd.

The preceding proof is an example of a direct proof. In our next example we shall prove
a result in three ways: first by a direct argument (or proof), then by the contrapositive
method, and finally by the method of proof by contradiction. [For the (method of) proof
by contradiction we put in some extra details, since this is our first opportunity to use this
technique.] The reader should not assume, however, that every theorem can be so readily
proved in a variety of ways.

THEOREM 2.4

If mn is an even integer, then m + 7 is odd.
Proof:

1) Since m 1s even, we have m = 2a for some integer a. Then m +7=2a +7 =
2a4+6+4+1=2a+ 3)+ 1. Since a + 3 is an integer, we know that m + 7 is odd.

2) Suppose that m + 7 is not odd, hence even. Then m + 7 = 2k for some integer b
andm=2b—-T=2b—-8+1=2(b—4)+ 1, where b — 4 is an integer. Hence
m is odd. [The result follows because the statements Vm [p(m) — g(m)] and
¥im[—g(m) — —pim)] are logically equivalent.]
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3) Now assume that m is even and that m + 7 is also even. (This assumption is the
negation of what we want to prove.) Then m + 7 even implies that m 4+ 7 = 2¢ for
some integer ¢. And, consequently, m =2c — 7 =2c — 8+ 1 = 2{c — 4) + | with
¢ — 4 an integer, so m is odd. Now we have our contradiction. We started with m even
and deduced m odd — an impossible situation, since no integer can be both even and
odd. How did we arrive at this dilemma? Simple — we made a mistake! This mistake
is the false assumption — namely, m + 7 is even — that we wanted to believe at the
start of the proof. Since the assumption is false, its negation is true, and so we now
have m + 7 odd.

The second and third proofs for Theorem 2.4 appear to be somewhat similar. This is
because the contradiction we derived in the third proof arises from the hypothesis of the
theorem and its negation, We shall see as we progress (as early as the next chapter) that a
contradiction may also be obtained by deriving the negation of a known fact — a fact that
is not the hypothesis of the theorem we are attempting to prove. For now, however, let us
think about this similarity a little more. Suppose we start with the open statements p(m)
and g (m) — for a prescribed universe — and consider a theorem of the form Vm [p(m) —
g(m)]. If we try to prove this result by the contrapositive method, then we shall actually
prove the logically equivalent statement Mm [—g(m) — —p(m)]. To do so we assume the
truth of =g (m) (for any specific but arbitrarily chosen m in the universe) and show that
this leads to the truth of = p(m). On the other hand, if we wish to prove the theorem
¥m [p(m) — g(m)] by the method of proof by contradiction, then we assume that the
statement Wm [p(m) — g (m)] is false. This amounts to the fact that p(m) — q(m) is false
for at least one replacement for m from the universe —that is, there is some element m
in the universe for which p(m) is true and g(m) is false [or —g(m) is true]. We then use
the truth of p(m) and —g(m) to derive a contradiction. [In the third proof of Theorem 2.4
we obtained p(m) A —p(m).] These two methods can be compared symbolically in the
following — where m is specific but arbitrarily chosen for the method of contraposition.

Assumption Result Derived
Contraposition —g(m) —pim)
Contradiction pim) and =g (m) Fy

In general, when we are able to establish a theorem by either a direct proof or an indirect
proof, the direct approach is less cumbersome than an indirect approach. (This certainly
appears to be the case for the three proofs presented for Theorem 2.4.) When we do not
have any prescribed directions given for attempting the proof of a certain theorem, we might
start with a direct approach. If we succeed, then all is well. If not, then we might consider
trying to find a counterexample to what we thought was a theorem. Should our search for
a counterexample fail, then we might consider an indirect approach. We might prove the
contrapositive of the theorem, or obtain a contradiction, as we did in the third proof of
Theorem 2.4, by assuming the truth of the hypothesis and the truth of the negation of the
conclusion (for some element m in the universe) in the given theorem.

We close this section with one more indirect proof by the method of contraposition,

THEOREM 2.5

For all positive real numbers x and v, if the product xv exceeds 25, then x = 5or v = 5.

Proof: Consider the negation of the conclusion — that is, suppose that 0 <= x <5 and 0 <
v = 5. Under these circumstances we find that0 =0 -0 < x - ¥y = 5. 5 = 25, so the product
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xy does not exceed 25. (This indirect method of proof now establishes the given statement,
since we know that an implication is logically equivalent to its contrapositive.)

EXERCISES 2.5

1. In Example 2.52 why did we stop at 26 and not at 287

2. In Example 2.52 why didn't we include the odd integers
between 2 and 267

3. Use the method of exhaustion to show that every even in-
teger between 30 and 58 (including 30 and 58) can be written
as a sum of at most three perfect squares.

4. Let n be a positive integer greater than 1. We call n prime
if the only positive integers that {exactly) divide n are | and
n itself. For example, the first seven primes are 2, 3, 5, 7, 11,
13, and 17. (We shall learn more about primes in Chapter 4.)
Use the method of exhaustion to show that every integer in the
universe 4, 6, 8, ..., 36, 38 can be written as the sum of two
primes,

5. For each of the following (universes and) pairs of state-
ments, use the Rule of Universal Specification, in conjunction
with Modus Ponens and Modus Tollens, in order to fill in the
blank line so that a valid argument results.

a) [The universe comprises all real numbers. |
All integers are rational numbers,
The real number 7 is not a rational number.

b) [The universe comprises the present population of the
United States.]

All librarians know the Library of Congress Classification
System.

. Margaret knows the Library of Congress Classification
System,

¢) [The same universe as in part (b).]

Sondra is an administrative director.

.. Sondra knows how to delegate authority.

d) [The universe consists of all quadnilaterals in the plane. ]
All rectangles are equiangular,

.-, Quadrilateral MN PQ is not a rectangle.

6. Determine which of the following arguments are valid and
which are invalid. Provide an explanation for each answer. (Let
the universe consist of all people presently residing in the United
States.)

a) All mail carriers carry a can of mace.

Mrs. Bacon is a mail carrier.
Therefore Mrs, Bacon carries a can of mace,

by All law-abiding citizens pay their taxes.

Mr. Pelosi pays his taxes.

Therefore Mr. Pelosi is a law-abiding citizen.

c¢) All people who are concerned about the environment

recycle their plastic containers.

Margarita is not concerned about the environment,

Therefore Margarita does not recycle her plastic containers.
7. For a prescribed universe and any open statements p(x),

g(x) in the variable x, prove that

a) 3x [p(x) v gx)] <= Ax p(x) v Ix q(x)
b) Wx [p(x) A gix)] <= ¥ pix) A V¥ gix)
8. a) Let p(x), g (x) be open statements in the variable x, with
a given universe. Prove that
Wx plx) v ¥ glx) = ¥y [ pix) v gix)]
[That is, prove that when the statement ¥x pix) v ¥x g(x)
is true, then the statement ¥Wx [plx) v g(x)] is true.]

b} Find a counterexample for the converse in part (a). That

is, find open statements plx), g (x) and a universe such that

W [pixd v gix)]is true, while W pix) v ¥ g(x) is false,

9. Provide the reasons for the steps verifying the following

argument, (Here @ denotes a specific but arbitrarily chosen ele-
ment from the given universe.)

Y [plx) = (gix) A rix))]
Vi [plx) A s(x)]
SN [rix) Acsix)]

Steps Reasons
1) Vx [plx) — (g(x) A rix))]
2) Y [pix) ~six))
3y pla) = (gia) A ria))
4) pla) ~sia)
5) pla)
6) gla) ~ria)
Ty ria)
8) sla)
9 ria) ~ 5la)
100 - %% [rix) A s(x)]
10. Provide the missing reasons for the steps verifying the fol-
lowing argument:
W [pix) v gix)]
Jx =pix)
¥ [=g(x) v rix)]
W [six) — =rix}]

o 3x —wix)




Steps Reasons
1) ¥ [plx) v gix)) Premise
2) Jx —-pix) Premise
3}y —pla) Step (2) and the definition of

the truth for 3x —p(x). [Here
a is an element (replacement)
from the universe for which
—pix) is true.] The reason for
this step is also referred to as
the Rule of Existential
Specification,

4) pla) v gla)

5) gla)

6) Yx [—g(x) v rix)]

Ty —qgla) v ria)

8) gla) — ria)

W ria)

10y W [s(x) — —rix)]

11} s(a) = —ria)

12) ria) = —s(a)

13) =s(a)

14) . Jx —six) Step (13) and the definition

of the truth for Ix —s(x). The

reason for this step is also

referred to as the Rule of

Existential Generalization.

11. Write the following argument in symbolic form. Then either
verify the validity of the argument or explain why it is invalid.
[Assume here that the universe comprises all adults (18 or over)
who are presently residing in the city of Las Cruces (in New
Mexico). Two of these individuals are Roxe and Imogene. ]

All credit union employees must know COBOL. All credit
union employees who write loan applications must know Ex-
cel.” Roxe works for the credit union, but she doesn’t know
Excel. Imogene knows Excel but doesn’t know COBOL. There-
fore Roxe doesn’t write loan applications and Imogene doesn’t
wrk for the credit union.
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12. Give a direct proof (as in Theorem 2.3) for each of the
following.

a) For all integers & and [, if k. [ are both even, then k 4/
is even,

b) For all integers &k and /, if k, [ are both even, then &f is
even.

13. For each of the following statements provide an indirect
proof [as in part (2) of Theorem 2.4] by stating and proving the
contrapositive of the given statement.
a) For all integers & and [, if &/ is odd, then k, | are both
odd.
b) For all integers k and /. if k 4 [ is even, then & and [ are
both even or both odd.

14. Prove that for every integer i, if o is odd. then n® is odd.

15. Provide a proof by contradiction for the following: For
every integer n, if n” is odd, then n is odd.

2

16. Prove that for every integer i, n° is even if and only if n is

even.

17. Prove the following result in three ways (as in Theorem
2.4): If m is an odd integer, then n + 11 is even.

18. Let m, n be two positive integers. Prove that if m, n are
perfect squares, then the product mn is also a perfect square,
19, Prove or disprove: If m, n are positive integers and m, n
are perfect squares, then m + n is a perfect square,

20. Prove or disprove: There exist positive integers m, n,
where m, n, and m + n are all perfect squares.

21. Prove that for all real numbers x and v, if x 4+ v = 100, then
x =50 0ry =50,

22, Prove that for every integer n, 4n + 7 is odd.

23. Let n be an integer. Prove that n is odd if and only if 7Tn + 8
is odd.

24, Let n be an integer. Prove that n is even if and only if
3ln + 12 is even.

This second chapter has introduced some of the fundamentals of logic — in particular, some
of the rules of inference and methods of proof necessary for establishing mathematical

theorems.

The first systematic study of logical reasoning is found in the work of the Greek philoso-
pher Aristotle (384-322 B.C.). In his treatises on logic Aristotle presented a collection of
principles for deductive reasoning. These principles were designed to provide a foundation

“The Excel spreadsheet is a product of Microsoft. Inc.
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for the study of all branches of knowledge. In a modified form, this type of logic was taught
up to and throughout the Middle Ages.

Aristotle (384-322 B.C)

The German mathematician Gottfried Wilhelm Leibniz ( 1646-1716) is often considered
the first scholar who seriously pursued the development of symbolic logic as a universal
scientific language. This he professed in his essay De Arte Combinatoria, published in 1666.
His research in the area of symbolic logic, carried out from 1679 to 1690, gave considerable
impetus to the creation of this mathematical discipline.

Following the work by Leibniz, little change took place until the nineteenth century, when
the English mathematician George Boole (1815-1864) created a system of mathematical
logic that he introduced in 1847 in the pamphlet The Mathematical Analysis of Logic,
Being an Essay Towards a Calculus of Deductive Reasoning. In the same year, Boole's
countryman Augustus DeMorgan (1806—-1871) published Formal Logic; or, the Calculus
af Inference, Necessary and Probable. In some ways this treatise extended Boole's work
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considerably. Then, in 1854, Boole detailed his ideas and further research in the notable
work An Investigation in the Laws of Thought, on Which Are Founded the Mathematical
Theories of Logic and Probabiliry. The American logician Charles Sanders Peirce (1839-
1914), who was also an engineer and philosopher, introduced the formal concept of the
quantifier into the study of symbolic logic.

The concepts formulated by Boole were thoroughly examined in the work of another
German scholar, Emst Schriider (1841-1902). These results are known collectively as Vor-
lesungen iiber die Algebra der Logik; they were published in the period from 1890 to
1895,

Further developments in the area saw an even more modern approach evolve in the work
of the German logician Gottlieb Frege (1848-1925) between 1879 and 1903. This work
significantly influenced the monumental Principia Mathematica (1910-1913) by England’s
Alfred North Whitehead (1861-1947) and Bertrand Russell (1872-1970). Here what was
begun by Boole was finally brought to fruition, Thanks to this remarkable effort and the work
of other twentieth-century mathematicians and logicians, in particular the comprehensive
Grundlagen der Mathemartik (1934—1939) of David Hilbert (1862—1943) and Paul Bernays
(18881977}, the more polished techniques of contemporary mathematical logic are now
available.

Several sections of this chapter stressed the importance of proof. In mathematics a proof
bestows authority on what might otherwise be dismissed as mere opinion. Proof embodies
the power and majesty of pure reason. But even more than that, it suggests new mathematical
ideas. Our concept of proof goes hand in hand with the notion of a theorem — a mathematical
statement the truth of which has been confirmed by means of a logical argument, namely, a
proof. For those who feel they can ignore the importance of logic and the rules of inference,
we submit the following words of wisdom spoken by Achilles in Lewis Carroll's Whar the
Tortoise Said to Achilles: “Then Logic would take you by the throat, and force you to do
it!”

Comparable coverage of the material presented in this chapter can be found in Chapters
2 and 11 of the text by K. A. Ross and C. R. B. Wright [11]. The first two chapters of the
text by 5. 8. Epp [3] provide many examples and some computer science applications for
those who wish to see more on logic and proof at a very readable introductory level. The
text by H. Delong [2] provides an historical survey of mathematical logic, together with an
examination of the nature of its results and the philosophical consequences of these results.
This is also the case with the texts by H. Eves and C. V. Newsom [4], R. R. Stoll [13], and
R. L. Wilder [14], wherein the relationships among logic, proof, and set theory (the topic
of our next chapter) are examined in their roles in the foundations of mathematics.

For more on resolution (introduced in Exercise 13 of Section 2.3) and automated rea-
soning, the reader should examine the texts by J. H, Gallier [6] and M. R. Genesereth and
N. I. Nilsson [7].

The text by E. Mendelson [9] provides an interesting intermediate introduction for those
readers who wish to pursue additional topics in mathematical logic. A somewhat more
advanced treatment is given in the work of §. C. Kleene [8]. Accounts of other work in
mathematical logic are presented in the compendium edited by J. Barwise [1].

The objective of the works by D. Fendel and D. Resek [5] and R. P. Morash [10] is to
prepare the student with a calculus background for the more theoretical mathematics found
in abstract algebra and real analysis. Each of these texts provides an excellent introduction
to the basic methods of proof. The unique text by D. Solow [12] is devoted entirely to
introducing the reader who has a background in high school mathematics to the primary
techniques used in writing mathematical proofs.
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7. a) For primitive statements p, g, find the dual of the state-
EXERCISES ment (—p A —g) v (Ty A p) V p.
b} Use the laws of logic to show that vour result from
part (a) is logically equivalent to p A =g,
8. Let p, g, r, and 5 be primitive statements. Write the dual

oo [(g Ar) = =(s v of each of the following compound statements,

2. a) Construct the truth table for

a) (pv—g)a(—rvs)
b) p— (g »n=r as)

(p—g)ai=p—rh c) [(pv Ty alg v Fll v [r o s a Tl

b) Translate the statement in part (a) into words such that
the word “not” does not appear in the translation.

3. Let p, q, and r denote primitive statements. Prove or dis-
prove (provide a counterexample for) each of the following.

9, For cach of the following, fill in the blank with the word
Cconverse, inverse, or confrapositive so that the result is a true
statement.

a) The converse of the inverse of p—g 15 the

of p—g.
8) [p g 1)l [ipeg) o] b) The converse of the inverse of p—g is the
b [p—lg—=rl=llp—+g)—=r] of g — p.
4. Express the negation of the statement p <+ g in terms of c) The inverse of the converse of p— g is the
the connectives A and v, of p—g.
5. Write the following statement as an implication in two d) The inverse of the converse of p—g is the
ways, eachin the {f-then form: Either Kaylyn practices herpiano of g — p.
lessons or she will not go to the movies. e) The inverse of the contrapositive of p— g is the
of P=dq.

6. Let p, g, r denote primitive statements. Write the converse,

inverse, and contrapositive of

a) p—(gAr) b)

10. Establish the validity of the argument

(pvg)—=r lp—=g)Allg Ar)—slar]—(p—s).



11. Prove or disprove each of the following, where p, g, and
are any statements.

a[ipYgl¥ri<[p¥ig¥r)]
b) [pYlg—=nl=[pig)—=(pLr)]
12, Write the following argument in symbolic form. Then ei-

ther establish the validity of the argument or provide a counter-
example to show that it is invalid.

If it is cool this Friday, then Craig will wear his
suede jacket if the pockets are mended. The fore-
cast for Friday calls for cool weather, but the pock-
ets have not been mended. Therefore Craig won't
be wearing his suede jacket this Friday.

13, Consider the open statement

plx, ¥y y-x=y+x*

where the universe for each of the variables x, v comprises all
integers. Determine the truth value for each of the following
statements.

a) p(0,0) b) p(l, 1)
c) p(0, 1) d) ¥y pl0, y)
e) Iy p(l, y) f) ¥x Iy plx, y)

g) Iy W¥x pix, v) h) ¥y 3x pix, v)
14, Determine whether each of the following statements is true
or false. If false, provide a counterexample. The universe com-
prises all integers.

a) ¥x Iy 3z (x = Ty + 52)
b) ¥x Iy 3z (x =4y + 62)
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15. Suppose two opposite corner squares are removed from an
& * 8 chesshoard — as in part (a) of Fig. 2.4, Can the remaining
62 squares be covered by 31 dominos (rectangles consisting of
two adjacent squares — one white and the other blue, as shown
in the figure)? (When a domino is placed on the chessboard, a
square of a given color need not be placed on a square of the
same color,)

] L:_IJLI_IJ

[a)

Figure 2.4

16. In part (b) of Fig. 2.4 we have an 8 x 8 chessboard where
two squares {one blue and one white) have been removed from
cach of two opposite comers. Can the remaining 60 squares be
covered by 15 T-shaped figures (of three white squares and one
blue one, or three blue squares and one white one — as shown
in the figure)? [The reader may wish to verify that a 4 X 4
chessboard (of all 16 squares) can be covered by four of the
T-shaped figures. Then it follows that an 8§ * 8 chessboard (of
all 64 squares) can be covered by 16 of the T-shaped figures.]






