MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

Module - 5
8051 Interrupts and Interfacing Applications

Interruptis one of the most important and powerful concepts and features
in microcontroller/processor applications. Almost all the real world and real time systems built around

microcontrollers and microprocessors make use of interrupts.

What is an Interrupt?

An interrupt refer to a notification, communicated to the controller, by a hardware device or software,
on receipt of which controller momentarily stops and responds to the interrupt. Whenever an interrupt
occurs the controller completes the execution of the current instruction and starts the execution of
an Interrupt Service Routine (ISR) or Interrupt Handler.

ISR is a piece of code that tells the processor or controller what to do when the interrupt occurs. After
the execution of ISR, controller returns back to the instruction it has jumped from (before the interrupt
was received). The interrupts can be either hardware interrupts or software interrupts.

Need of interrupts

An application built around microcontrollers generally has the following structure. It takes input from
devices like keypad, ADC etc; processes the input using certain algorithm; and generates an output
which is either displayed using devices like seven segment, LCD or used further to operate other devices
like motors etc. In such designs, controllers interact with the inbuilt devices like timers and other
interfaced peripherals like sensors, serial port etc. The programmer needs to monitor their status
regularly like whether the sensor is giving output, whether a signal has been received or transmitted,
whether timer has finished counting, or if an interfaced device needs service from the controller, and
so on. This state of continuous monitoring is known as polling.

In polling, the microcontroller keeps checking the status of other devices; and while doing so it does
no other operation and consumes all its processing time for monitoring. This problem can be addressed
by using interrupts. In interrupt method, the controller responds to only when an interruption occurs.
Thus in interrupt method, controller is not required to regularly monitor the status (flags, signals etc.)

of interfaced and inbuilt devices.

To understand the difference better, consider the following. The polling method is very much similar
to a salesperson. The salesman goes door-to-door requesting to buy its product or service. Like
controller keeps monitoring the flags or signals one by one for all devices and caters to whichever needs
its service. Interrupt, on the other hand, is very similar to a shopkeeper. Whosoever needs a service or
product goes to him and apprises him of his/her needs. In our case, when the flags or signals are
received, they notify the controller that they need its service.

Hardware & Software Interrupt

The interrupts in a controller can be either hardware or software. If the interrupts are generated by the
controller’s inbuilt devices, like timer interrupts; or by the interfaced devices, they are called the
hardware interrupts. If the interrupts are generated by a piece of code, they are termed as software
interrupts.

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. n

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

Multiple interrupts

What would happen if multiple interrupts are received by a microcontroller at the same instant? In such
a case, the controller assigns priorities to the interrupts. Thus the interrupt with the highest priority is
served first. However the priority of interrupts can be changed configuring the appropriate registers in
the code.

8051 Interrupts

The 8051 controller has six hardware interrupts of which five are available to the programmer. These

are as follows:

[8051 Interrupts]

4 h 4 v A

l Reset | Timer I l External I Serial

l'

1. RESET interrupt — This is also known as Power on Reset (POR). When the RESET interrupt is
received, the controller restarts executing code from 0000H location. This is an interrupt which is not
available to or, better to say, need not be available to the programmer.

2. Timer interrupts — Each Timer is associated with a Timer interrupt. A timer interrupt notifies the
microcontroller that the corresponding Timer has finished counting.

3. External interrupts — There are two external interrupts EX0 and EX1 to serve external devices.
Both these interrupts are active low. In AT89C51, P3.2 (INTO) and P3.3 (INT1) pins are available for
external interrupts 0 and 1 respectively. An external interrupt notifies the microcontroller that an
external device needs its service.

4. Serial interrupt — This interrupt is used for serial communication. When enabled, it notifies the
controller whether a byte has been received or transmitted.

How is an interrupt serviced?

Every interrupt is assigned a fixed memory area inside the processor/controller. The Interrupt Vector
Table (IVT) holds the starting address of the memory area assigned to it (corresponding to every
interrupt).

The interrupt vector table IVT) for AT89C51 interrupts is as follows :

748 DEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

Reset 0000 9 Auto
External interrupt 0 0003 12 Auto
Timer interrupt 0 000B - Auto
External interrupt 1 0013 13 Auto
Timer interrupt 1 001B — Auto
Serial COM interrupt 0023 — Programmer clears it

When an interrupt is received, the controller stops after executing the current instruction. It transfers
the content of program counter into stack. It also stores the current status of the interrupts internally
but not on stack. After this, it jumps to the memory location specified by Interrupt Vector
Table (IVT). After that the code written on that memory area gets executed. This code is known as
the Interrupt Service Routine (ISR) or interrupt handler. ISR is a code written by the programmer to
handle or service the interrupt.

Programming Interrupts

While programming interrupts, first thing to do is to specify the microcontroller which interrupts must
be served. This is done by configuring the Interrupt Enable (IE) register which enables or disables the
various available interrupts. The Interrupt Enable register has following bits to enable/disable the
hardware interrupts of the 8051 controller.

IE : EA - ET2 ES ET1 EX1 ETO EX0
Bit Values of IE Register of 8051 Microcontroller

To enable any of the interrupts, first the EA bit must be set to 1. After that the bits corresponding to
the desired interrupts are enabled. ETO, ET1 and ET2 bits are used to enable the Timer Interrupts 0,
1 and 2, respectively. In AT89C51, there are only two timers, so ET2 is not used. EX0 and EX1 are
used to enable the external interrupts 0 and 1. ES is used for serial interrupt.

EA bit acts as a lock bit. If any of the interrupt bits are enabled but EA bit is not set, the interrupt will
not function. By default all the interrupts are in disabled mode.

Note that the IE register is bit addressable and individual interrupt bits can also be accessed.
Note that the IE register is bit addressable and individual interrupt bits can also be accessed.
For example —

IE = 0x81; enables External Interrupt0 (EXO0)

IE = 0x88; enables Serial Interrupt

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. m

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

Setting the bits of IE register is necessary and sufficient to enable the interrupts. Next step is to specify
the controller what to do when an interrupt occurs. This is done by writing a subroutine or function
for the interrupt. This is the ISR and gets automatically called when an interrupt occurs. It is not
required to call the Interrupt Subroutine explicitly in the code.

An important thing is that the definition of a subroutine must have the keyword interrupt followed
by the interrupt number. A subroutine for a particular interrupt is identified by this number.

These subroutine numbers corresponding to different interrupts are tabulated below.

0 External(EXO
1 TimerO ITO
2 Externall EX1
3 Timer1 Im
4 Serial ES

5 Timer2 ET2

For example : Interrupt routine for Timerl

void ISR_timer1(void) interrupt 3
{
<Body of ISR>

}

For example : Interrupt routine for External Interrupt0 (EXO0)

void ISR_exO(void) interrupt 0
{
<Body of ISR>

}

Note that the interrupt subroutines always have void return type. They never return a value.

Programming Timer Interrupts

1. Programming Timer Interrupts

The timer interrupts ITO and IT1 are related to Timers 0 and 1, respectively. (Please refer 8051
Timers for details on Timer registers and modes.) The interrupt programming for timers involves
following steps :

Configure TMOD register to select timer(s) and its/ their mode.

Load initial values in THx and TLx for mode 0 and 1; or in THx only for mode 2.
Enable Timer Interrupt by configuring bits of IE register.

Start timer by setting timer run bit TRx.

i e

Write subroutine for Timer Interrupt. The interrupt number is 1 for TimerO and 3 for Timer].

mDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

6. Note that it is not required to clear timer flag TFx.
7. To stop the timer, clear TRx in the end of subroutine. Otherwise it will restart from 0000H in
case of modes 0 or 1 and from initial values in case of mode 2.
8. If the Timer has to run again and again, it is required to reload initial values within the routine
itself (in case of mode 0 and 1). Otherwise after one cycle timer will start counting from 0000H.
Excample code
Timer interrupt to blink an LED; Time delay in model using interrupt method
// Use of Timer mode0 for blinking LED using interrupt method
// XTAL frequency 11.0592MHz
#include<reg51.h>

sbit LED = P170; //LED connected to DO of port 1

void timer(void) interrupt 1 //interrupt no. 1 for Timer 0

{
led=~led; //toggle LED on interrupt
THO=0xFC; // initial values loaded to timer
TLO=0x066;

J

main()

{
TMOD = 0x01; // model of Timer0
THO = 0xFC; // initial values loaded to timer
TLO = 0x0606;
IE = 0x82; // enable interrupt
TRO = 1; //start timer
while(1); // do nothing

§

Programming External Interrupts

2. Programming External Interrupts

The external interrupts are the interrupts received from the (external) devices interfaced with the
microcontroller. They are received at INTx pins of the controller. These can be level triggered or edge
triggered. In level triggered, interrupt is enabled for a low at INTx pin; while in case of edge triggering,
interrupt is enabled for a high to low transition at INTx pin. The edge or level trigger is decided by the
TCON register. The TCON register has following bits:

TCON TF1 TR1 TFO TRO IE1 1T IEO ITO

Bit Values of TCON Register of 8051 Microcontroller

Setting the I'T0 and IT1 bits make the external interrupt 0 and 1 edge triggered respectively. By default
these bits are cleared and so external interrupt is level triggered.

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. n

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

Note: For a level trigger interrupt, the INTx pin must remain low until the start of the ISR and should
return to high before the end of ISR. If the low at INTx pin goes high before the start of ISR, interrupt
will not be generated. Also if the INTx pin remains low even after the end of ISR, the interrupt will be
generated once again. This is the reason why level trigger interrupt (low) at INTx pin must be four
machine cycles long and not greater than or smaller than this.

Following are the steps for using external interrupt:
1. Enable external interrupt by configuring IE register.
2. Write routine for external interrupt. The interrupt number is 0 for EX0 and 2 for EX1
respectively.
3.
Example 5.1
//Level trigger external interrupt

void main()

i

IE = 0x81;

while(1);
j
void ISR_ex0(void) interrupt O
{

<body of interrupt>
b
Example 5.2

//Edge trigger external interrupt
void main()

{
IE = 0x84;
IT1 =1;
while(1);

h

void ISR_ex1(void) interrupt 2
1

<body of interrupt>

mDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

Programming Serial Interrupt

To use the serial interrupt the ES bit along with the EA bit is set. Whenever one byte of data is sent or
received, the serial interrupt is generated and the TI or RI flag goes high. Here, the TT or RI flag needs
to be cleared explicitly in the interrupt routine (written for the Serial Interrupt).

The programming of the Serial Interrupt involves the following steps:
1. Enable the Serial Interrupt (configure the IE register).
2. Configure SCON register.
3. Write routine or function for the Serial Interrupt. The interrupt number is 4.
4. Clear the RI or TT flag within the routine.

Example 5.3

Send ‘A’ from serial port with the use of interrupt
// Sending ‘A’ through serial port with interrupt
// XTAL frequency 11.0592MHz

void main()
{
TMOD = 0x20;
TH1 = -1;
SCON = 0x50;
TR1 =1;
IE = 0x90;
while(1);
}
void ISR_sc(void) interrupt 4
{
if(TI==1)
{
SBUF = ‘A’
TI = 0;
¥
else
RI = 0;
}

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. m

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

Example 5.4
// Receive data from serial port through interrupt
// XTAL frequency 11.0592MHz

void main()
{
TMOD = 0x20;
TH1 = -1;
SCON = 0x50;
TR1 =1;
1E = 0x90;
while(1);
}
void ISR_sc(void) interrupt 4
{
unsigned char val;
if(TI==1)
{
TI = 0;
}
else
{
val = SBUF;
RI=0;
§

mDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

Stepper Motor Interfacing:

Stepper motor is a widely used device that translates electrical pulses into mechanical movement.
Stepper motor is used in applications such as; disk drives, dot matrix printer, robotics etc,. The
construction of the motor is as shown in figure below.

Figure: Structure of stepper motor

It has a permanent magnet rotor called the shaft which is surrounded by a stator. Commonly used
stepper motors have four stator windings that are paired with a center — tapped common. Such motors
are called as four-phase or unipolar stepper motor. The stator is a magnet over which the electric coil
is wound. One end of the coil are connected commonly either to ground or +5V. The other end is
provided with a fixed sequence such that the motor rotates in a particular direction. Stepper motor
shaft moves in a fixed repeatable increment, which allows one to move it to a precise position.
Direction of the rotation is dictated by the stator poles. Stator poles are determined by the current sent
through the wire coils.

Step angle: Step angle is defined as the minimum degree of rotation with a single step.
No of steps per revolution = 360° / step angle Steps per second = (rpm x steps pet revolution) / 60
Example: step angle = 2° No of steps pet revolution = 180

Switching Sequence of Motor: As discussed earlier the coils need to be energized for the rotation.
This can be done by sending a bits sequence to one end of the coil while the other end is commonly
connected. The bit sequence sent can make either one phase ON or two phase ON for a full step

sequence or it can be a combination of one and two phase ON for half step sequence. Both are
tabulated below.

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. m

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

Full Step: Two Phase ON

Clockwise [step#| A | B | ¢ | D | Counter-
1 1 0 0 1 clockwise
2 1 1 0 0
3 0 1 1 0
4 0 0 1 1
One Phase ON
Clockwise |[Step#| A | B | C | D | Counter-
1] 0 0 0 clockwise
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
Half Step (8 — sequence): The sequence is tabulated as below:
Clk Step#| A | B | € |1 D | Anti-Clk
L 1 0 (o] 1
2 1 0 (o} (o}
~ 3 | 3 4]0 o
4 o 1 o o
- 0 1 1 o
6 o | o 1 0
7 (o] 0 1 1
8 o) 0 0 1

8051 Connection to Stepper Motor: (explanation of the diagram can be done)

8051 _f Driver Stepper Motor
[— |
: »“I =)
et lm‘ m‘\
+5

Figure: 8051 interface to stepper motor

The following example 1 to example 6 shown below will elaborate on the discussion done above:

mDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

Example 1: Write an ALP to rotate the stepper motor clockwise / anticlockwise continuously with full
step sequence.

Program:
MOV A, #66H
BACK: MOV P1, A
RR A
ACALL DELAY
SJIMP BACK
DELAY: MOV R1, #100
UP1: MOV R2, #50
UPp: DJNZ R2, UP
DJNZ R1, UP1
RET

Note: motor to rotate in anticlockwise use instruction RLL A instead of RR A

Example 2: A switch is connected to pin P2.7. Write an ALP to monitor the status
of the SW. If SW = 0, motor moves clockwise and 1if SW = 1, motor moves
anticlockwise.
Program:
ORG 0000H
SETB P2.7
MOV A, #66H
MOV P1A
TURN: INBP2.7, CW
RLA
ACALL DELAY
MOV PLA
SIMP TURN
CW: RRA
ACALL DELAY
MOV P1A
SIMP TURN
DELAY" as previous example

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG.

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

Example 3: Write an ALP to rotate a motor 907 clockwise. Step angle of motor 1s
2°

Solution:

Step angle = 2°

Steps per revolution = 180

No of rotor teeth = 45

For 90° rotation the no of steps is 45

Program:
ORG 0000H
MOV A, #66H
MOV RO, #45
BACK: RR A
MOV PIL, A
ACALL DELAY
DINZ RO, BACK
END

Example 4: Rotate the stepper motor continuously clockwise using half-step 8-step
sequence. Say the sequence 1s in ROM locations.

Program:
ORG 0000H
START: MOV RO, #08
MOV DPTR, #HALFSTEP
RPT: CLRA
MOVC A, @A+DPTR
MOV P1, A
ACALL DELAY
INC DPTR
DINZ RO, RPT
SIMP START
ORG 0200H
HALFSTEP DB 09, 08, 0CH, 04, 06, 02, 03, 01
END

68 DEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

Programming Stepper Motor with 8051 C
The following examples 5 and 6 will show the programming of stepper motor using 8051 C.

Example 5: Problem definition 1s same as example 1.

Program:
#include <reg51.h>

vold main ()

while (1)

P1=0x66;
MSDELAY (200);
P1=0x33:
MSDELAY (200);
P1=0x99:
MSDELAY (200);
P1=0xCC:;
MSDELAY (200);

i

i

1
]

vold MSDELAY (unsigned char value)

unsigned int X,y;
for(x=0x=<1275:x++)

for(y=0;y<value;y++);

et

Program:
#include <reg51.h=
sbit SW=P2"7;
void main ()
i
SW=I;
while (1)
1
if(SW==0){
P1=0x66;
MSDELAY (100);
P1=0x33;
MSDELAY (100);
P1=0x99;
MSDELAY (100);
P1=0xCC:
MSDELAY (100);
]
else |
P1=0x66;
MSDELAY (100);
P1=0xCC:

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. m

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

MSDELAY (100):

else |
P1=0x66;
MSDELAY (100);
P1=0xCC:
MSDELAY (100);
P1=0x99;
MSDELAY (100);
P1=0x33;
MSDELAY (100);

]
void MSDELAY (unsigned char value)

]
]

unsigned int x,y;
for(x=0:x<1275:x++)
for(y=0;y<value;y++);

Digital-to-Analog (DAC) converter:

The DAC is a device widely used to convert digital pulses to analog signals. In this section we will
discuss the basics of interfacing a DAC to 8051. The two method of creating a DAC is binary weighted
and R/2R ladder. The Binary Weighted DAC, which contains one tesistor or cutrent source for each
bit of the DAC connected to a summing point. These precise voltages or currents sum to the correct
output value. This is one of the fastest conversion methods but suffers from poor accuracy because of
the high precision required for each individual voltage or current. Such high- precision resistors and
current-sources are expensive, so this type of converter is usually limited to 8-bit resolution or less.

The R-2R ladder DAC, which is a binary weighted DAC that uses a repeating cascaded structure of
resistor values R and 2R. This improves the precision due to the relative ease of producing equal valued

matched resistors (or current sources). However, wide converters perform slowly due to increasingly
large RC-constants for each added R-2R link.

The first criterion for judging a DAC is its resolution, which is a function of the number of binary
inputs. The common ones are 8, 10, and 12 bits. The number of data bit inputs decides the resolution
of the DAC since the number of analog output levels is equal to 2n, where n is the number of data bit
inputs. DACO0808: The digital inputs are converter to current Iout, and by connecting a resistor to the
Iout pin, we can convert the result to voltage. The total current Iout is a function of the binary numbers
at the DO-D7 inputs of the DACO0808 and the reference current Iref , and is as follows:

Usually reference current is 2mA. Ideally we connect the output pin to a resistor, convert this current
to voltage, and monitor the output on the scope. But this can cause inaccuracy; hence an opamp is
used to convert the output current to voltage. The 8051 connection to DACO0808 is as shown in the
figure below.

nDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

o5y oSV
0081 l 5K
Vieli+)
Y s e 5K
P10 }—e——o; 00 28 f
BaG ' ' 1K
" Comp " IR vout
P17 o7 100 o ‘ 0.1pF
AV .
L_Jono

el

Figure: 8051 connection to DAC0808

The following examples 9, 10 and 11 will show the generation of waveforms using DACO0808.

Example 9: Write an ALP to generate a triangular waveform.

Program:

MOV A, #00H
INCR: MOV P1, A

INC A

CINE A, #255, INCR
DECR: MOV P1, A

DEC A

CINE A, #00, DECR

SIMP INCR

END

Example 10: Write an ALP to generate a sine waveform.
Vou = SV(1+sinB)

Solution: Calculate the decimal values for every 10 degree of the sine wave. These
values can be maintained in a table and simply the values can be sent to port P1. The
sinewave can be observed on the CRO.

Program:
ORG 0000H
AGAIN: MOV DPTR, #SINETABLE
MOV R3, #COUNT
UPp: CLR A
MOVC A, @A+DPTR
MOV P1, A
INC DPTR
DINZ R3, UP
SIMP AGAIN
ORG 0300H
SINETABLE DB 128, 192, 238, 255, 238, 192, 128, 64, 17,0, 17, 64, 128
END
Note: to get a better wave regenerate the values of the table per 2 degree.

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. n

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

Example 10: Write a C program to generate a sine waveform.
Vout = SV(1+sin0)
Program:
#include<reg51.h>
sfr dacdata=P1:
void main()
d
unsigned char sinetable[12]={ 128, 192, 238, 255, 238, 192,
128,64, 17,0, 17, 64}
unsigned char x;
while (1)
t
for(x=0x<12:x++)

dacdata = sinetable[x];

1
]

et
——

Analog-to-digital converter (ADC) interfacing:

ADCs (analog-to-digital converters) are among the most widely used devices for data acquisition. A
physical quantity, like temperature, pressure, humidity, and velocity, etc., is converted to electrical
(voltage, current) signals using a device called a transducer, or sensor We need an analog-to-digital
converter to translate the analog signals to digital numbers, so microcontroller can read them. ADC804
chip: ADC804 IC is an analog-to-digital converter. It works with +5 volts and has a resolution of 8
bits. Conversion time is another major factor in judging an ADC. Conversion time is defined as the
time it takes the ADC to convert the analog input to a digital (binary) number. In ADC804 conversion
time varies depending on the clocking signals applied to CLK R and CLK IN pins, but it cannot be
faster than 110us.

Pin Description of ADC804:

ADCOB04
+5V
20
10k 2} Veo
POT ¥ —|Vin{+) nol 28
T 17
2__lacno D1hs
-) Vrefi2 DZ s
5 o3 to
CLKR 041—3-— L.FDs
ok % ol e —
180 pr —- i o7 L2)
T 1
—>9¢Cs 3
100R0 WR 3
D OND ,ng: normatly
open
é START
=

EDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

CLK IN and CLK R: CLK IN is an input pin connected to an external clock source. To use the
internal clock generator (also called self-clocking), CLK IN and CLK R pins are connected to a
capacitor and a resistor and the clock frequency is determined by:

Typical values are R = 10K ohms and C =150pF. We get f = 606 kHz and the conversion time is
110pus.

Vref/2: Itis used for the reference voltage. If this pin is open (not connected), the analog input voltage
is in the range of 0 to 5 volts (the same as the Vcc pin). If the analog input range needs to be 0 to 4
volts, Vref/2 is connected to 2 volts. Step size is the smallest change can be discerned by an ADC

Vref/2 Relation to Vin Range

Vreef/ 2(V) Vin(V) Step Size (mV)

Not connected* Oto5 5/256=19.53
20 Oto4 4/255=15.62

1.5 Cto3 3/256=11.71

1.28 0 to 2.56 2.56/256=10

1.0 Oto2 2/256=7,81

0.5 OQto1l 1/256=3.90

DO0-D7: The digital data output pins. These are tri-state buffered. The converted data is accessed only
when CS =0 and RD is forced low. To calculate the output voltage, use the following formula

Dy = Vi
' step size

Dout = digital data output (in decimal),
Vin = analog voltage, and
step size (resolution) is the smallest change

Analog ground and digital ground: Analog ground is connected to the ground of the analog Vin and
digital ground is connected to the ground of the Ve pin. To isolate the analog Vin signal from transient
voltages caused by digital switching of the output D0 — D7. This contributes to the accuracy of the
digital data output.

Vin(+) & Vin(-): Differential analog inputs where Vin = Vin (+) — Vin (-). Vin (-) is connected to
ground and Vin (+) is used as the analog input to be converted.

RD: Is “output enable” a high-to-low RD pulse is used to get the 8-bit converted data out of ADC804.

INTR: It is “end of conversion” When the conversion is finished, it goes low to signal the CPU that
the converted data is ready to be picked up.

WR: It is “start conversion” When WR makes a low-to-high transition, ADC804 starts converting the
analog input value of Vin to an 8- bit digital number.

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. n

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

CS: It is an active low input used to activate ADC804.

The following steps must be followed for data conversion by the ADC804 chip:

1. Make CS= 0 and send a L.-to-H pulse to pin WR to start conversion.

2. Monitor the INTR pin, if high keep polling but if low, conversion is complete, go to next step.
3. Make CS= 0 and send a H-to-L pulse to pin RD to get the data out

The following figure shows the read and write timing for ADC804.

Cs

i L

W |
09 - 07 Data out
TR

Stan corwersion End conversion

RO

Flofe: CS ie s 40 law for bath RD and WH pulsas. i
Read it

The following figures shows the self-clocking with the RC component for frequency and the external
frequency connected to XTAL2 of 8051.

8051 ADC804 T
P2.5 RO Vec
Ok 150 pF
P26 WR cLK R‘j"
CLK IN
P10 Do
o) _1_ 10k
o % POT
A GND
Vref/2 }—o |
P17 «-—{D7 GND % -
P27} |INTR —
Cs | =

Figure : 8051 Connection to ADC0804 with Self-clocking

=

el ADCEG4 T
| —p——|¥TALI P22 P s
5 () [Wh CLK R[—
ClR N
kL 10k
B & Wine) b B Py
— B, & GND
-l Viih2 = I
P17 =07 GMD|— = -
Lo P2 Tj—a—{INTR
S 1 T l
TALET4 = |

Figure : 8051 Connection to ADCOE04 with Clock from XTAL2 of 8051

nDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

Programming ADCO0804 in assembly

MYDATA EQU PI1
MOV P1, #0FFH
SETB P2.7

BACK: CLR P26
SETB P2.6

HERE: JB P27, HERE
CLR P25
MOV A, MYDATA
SETB P2.5
SIMP BACK

Programming ADC0804 in C

#include<reg51.h=
Sbit RD=P2"5;
Sbit WR=P2"6;
Sbit INTR=P2"7;
Sfr Mydata=P1;
Void main ()
i
Unsigned char value;
Mydata =0xFF;
INTR=I1;
RD=1;
WR=1;
While (1)
|
WR=0;
WR=1;
While (INTR == 1);
RD=0;
Value =Mydata;,
RD=1;
i

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. E

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

ADCO0808/0809 chip: ADCS808 has 8 analog inputs. It allows us to monitor up to 8 different
transducers using only single chip. The chip has 8-bit data output just like the ADC804. The 8 analog
input channels are multiplexed and selected according to the values given to the three address pins, A,
B, and C. that is; if CBA=000, CHO is selected; CBA=011, CH3 is selected and so on. The pin details
of ADCO0808 are as shown in the figure below. (Explanation can be done as is with ADC0804).

IN0 —] GND Ciock WVeg b DO
—_— }——e
—_—— , —e
- ADC208/80% —
e } ——o

N =z — D7
i | VR #) eoct
e | VRN) OF

SCALECBA

P ttes
Figure : Pin out of ADCO808

Steps to Program ADC0808/0809

1. Select an analog channel by providing bits to A, B, and C addresses.

2. Activate the ALE pin. It needs an L-to-H pulse to latch in the address.
3. Activate SC (start conversion) by an H-to-L pulse to initiate conversion.
4. Monitor EOC (end of conversion) to see whether conversion is finished.

5. Activate OE (output enable) to read data out of the ADC chip. An H-to-L pulse to the OE pin will
bring digital data out of the chip.

MYDATA EQU P1
ORG 0000H
MOV MYDATA , #0FFH
SETB P27
CLE P24
CLRE P26
CLE P25
BACK: CLE P2.0O
CLR P21
SETB P22
ACALL DELAY
SETE P24
ACALL DELAY
SETB P26
ACALL DELAY
CLE P24
CLR P26
HERE: JB P27, HERE
HERET1: JNB P27, HEREI1
SETE P2.5
ACALL DELAY
MOV A, MYDATA
CLE P25
SIMP BACK

HDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

LCD Interfacing:

LCD is finding widespread use replacing LEDs for the following reasons: The declining prices of LCD

The ability to display numbers, characters, and graphics Incorporation of a refreshing controller into
the LCD, thereby relieving the CPU of the task of refreshing the LCD Ease of programming for

characters and graphics.

Pin Description:

- Send displayed

imformation or
mstruction
command codes to
the LCD

- Read the contents
of the LCD’s
internal registers

Command codes

Cade (Hex) Command to | CD Instruction

Pin Symbel I/O Description
1 Veg == Ground
2 Vee = I 5V power supply
3 Vee = Power supply
10 control contrast
4 RS I RS=0 10 sclect
command register,
RS=1 to select
data register
R/W 1 R/W=0 for write,
R/W=1 for read
E 1I/O Enable
DB0O 1/O The 8-bit data bus
DBl /O The 8-bit data bus
DB2 /0 The 8-5it data bus
DB> 1/0O The §-Hit data bus
DB<4 1/O The 8-Hit data bus
DBs 1/0 The §-bit data bus
DBG /O The 8-bit data bus
DB7 1/0 The 8-bit data bus

Register

Clear display su=en

Return tome

Necrament cursor (shift corsor tn 1efT)
Incremenl cursor (shifl cursor Lo right)

Shift display rignt

Shitt display lert
Display off, cursor off

Displey off, cursor o1

Display on, cursor off
Nisplay on, cursor blinkirg

M PP NN O M

Display on, cursor blinkirg

—
(<)

Shift cursor position to lcft

—
-~

Shift curser position to right

=
n

ShifL the =ntire display W Ue kil

Shift the antire display to the right

~orce cursor to beginning to 1st line
Force cursor £2 beginning to 2nd line

&8 &R

2 lines ard 5x7 matrix

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG.

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

LCD timing diagram for reading and writing is as shown in the below figures.

LCD Timing for Read

D0-D7 Data >
o

E

tarr

RW
R <~
tay = Hold time after E has
come down for both RS and
R/W =10 ns (mmimum)

tas= Setup time prior to E
igh) for both RS and
40 ns (minimum)

Note : Read requires an L-to-H pulse for the E pin

LCD Timing for Write

tpgw = Data _s:_t up time
= 195 ns (minimum)

ty = Data hold time
= 10 ns (minimum)

tagp = Hol‘l time after E has
come down for both RS and
R/W =10 ns (minimum)
tpwg = Enable pulse width
= 450 ns (minimum)

tyg = Setup time prior to E
(going high) for both RS and
R/W = 140 ns (minimum)

Sending Data/ Commands to LCDs with Time Delay: To send any of the commands to the LCD,
make pin RS=0. For data, make RS=1. Then send a high-to-low pulse to the E pin to enable the internal

latch of the LCD.

Example 11: Write an ALP to initialize the LCD and display message “YES”. Say
the command to be given 1s :38H (2 lines ,5x7 matnx), OEH (LCD on, cursor on),
O1H (clear LCD), 06H (shift cursor right), 86H (cursor: line 1, pos. 6)

Program:

;calls a time delay before sending next data/command ;P1.0-P1.7 are connected to
LCD data pins DO- D? :P2.0 1s connected to RS pin of LCD ;P2.1 1s connected to
R/W pin of LCD ;P22 is connected to E pin of LCD

ORG OH
MOV A #38H
ACALL COMNWRT
ACALL DELAY
MOV A #0EH
ACALL COMNWRT
ACALL DELAY
MOV A #01
ACALL COMNWRT
ACALL DELAY
MOV A #06H
ACALL COMNWRT
ACALL DELAY
MOV A #86H
ACALL COMNWRT
ACALL DELAY

JANIT. LCD 2 LINES, 5X7 MATRIX
:call command subroutine

:give LCD some time

.display on, cursor on

:call command subroutine

give LCD some time

:¢lear LCD

:call command subroutine
:give LCD some time
;shift cursor nght

:call command subroutine

:give LCD some time
:cursor at line 1, pos. 6
:call command subroutine
:give LCD some time

nDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

MOV A#Y’
ACALL DATAWRT
ACALL DELAY
MOV A#'E’
ACALL DATAWRT
ACALL DELAY
MOV A #'S’
ACALL DATAWRT

AGAIN: SIMP AGAIN

COMNWRT:

RET

MOV PLA
CLRP2.0

CLR P21

SETB P22
ACALL DELAY
CLR P22

DATAWRT:

RET

MOV PLA
SETB P2.0

CLR P21

SETB P22
ACALL DELAY
CLR P22

DELAY:

MOV R3,#50

HERE2: MOV R4, #255
HERE: DINZ R4 HERE

RET

END

DINZ R3 HERE2

.display letter Y

;call display subroutine
-give LCD some time
:display letter E

;call display subroutine

give LCD some time

.display letter 5

;call display subroutine
:stay here

send command to LCD
:copy reg A to port |
‘RS=0 for command
RW=0 for write

:E=1 for high pulse

give LCD some time
:E=0 for H-to-L pulse

-write data to LCD
;copy reg A to port |
‘R5=1 for data
B/W=0 for write

;E=1 for high pulse

:give LCD some time
:E=0 for H-to-L pulse

;50 or higher for fast CPUs
‘R4 =255
;stay until R4 becomes 0

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG.

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

Example 12: Modify example 11, to check for the busy flag (D7=>P1.7), then send
the command and hence display message “NO”.

:Check busy flag before sending data, command to LCD;pl=data pin ;P2.0 connected
to RS pin ;P2.1 connected to R/W pin ;P2.2 connected to E pin

ORG 0H
MOV A #38H :nit. LCD 2 lines ,5x7 matrix
ACALL COMMAND ;1ssue command
MOV A #0EH :LCD on, cursor on
ACALL COMMAND :1ssue command
MOV A#01H :clear LCD command
ACALL COMMAND :1ssue command
MOV A #06H :shift cursor right
ACALL COMMAND 1ssue command
MOV A #86H scursor: line 1, pos. 6
ACALL COMMAND :command subroutine
MOV A #N’ .display letter N
ACALL DATA_DISPLAY
MOV A #0O° .display letter O
ACALL DATA DISPLAY

HERE:SIMP HERE STAY HERE

COMMAND:
ACALL READY ;15 LCD ready?
MOV PLA :1ssue command code
CLE P20 :RS=0 for command
CLR P2.1 :R'W=0 to write to LCD
SETB P22 :E=1 for H-to-L pulse
CLR P22 :E=0 latch in

RET

DATA_DISPLAY:
ACALL READY ;18 LCD ready?
MOV PLA :15sue data
SETB P20 :RS=1 for data
CLR P21 :R/'W =0 to write to LCD
SETB P22 :E=1 for H-to-L pulse
CLR P22 :E=0 latch in

RET

READY:
SETB P1.7 :make P1.7 input port
CLR P20 :R5=0 access command reg
SETB P2.1 :R/W=I read command reg ;

BACK:SETB P2.2 :E=1 for H-to-L pulse
CLR P22 :E=0 H-to-L pulse
JB P1.7 BACK :stay until busy flag=0

RET

END

mDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS [Rt 8 Silo X

Programming LCD in C

Example 13: Write an 8051 C program to send letters *P°, °I’, and *C” to the LCD using
the busy flag method.
Solution:
#include <regS1.h>
sfr Idata = 0x90; //P1=LCD data pins
shit rs = P2"(0:
shit rw = P2"1:
sbit en = P2°2:
sbit busy = P17,
void main() |
ledemd({0x38);
ledemd(0x0E):;
ledemd(0x01):;
ledemd(0x06);
ledemd(0x86); //line 1, position 6
leddata(*P);
leddata(*I™);
leddata(*C");
}

vold ledemd(unsigned char value)
ledready(); f/check the LCD busy flag

Idata = value; //put the value on the pins
rs =10
rw =)
en=1; //strobe the enable pin
MSDelay(1);
en=();
return;

i

vold leddata(unsigned char value){
ledready(); /Icheck the LCD busy flag
Idata = value; //put the value on the pins
rs=1:
rw =)
en=1; //strobe the enable pin
MSDelay(1);
en=(;
return;

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. m

18EC44 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

void ledready(){

busy = 1; //make the busy pin at input
rs=10:

w=1:

while(busy==1) //wait here for busy flag
en=1(; //strobe the enable pin
MSDelay(1);

en=1:

}
|

void Msdelay(unsigned int itime){
unsigned int 1, J;
for(1=0;1<1time;1++)
for(j=0,=<1275;)++);

Skokokskokok Rk R Rk kR Rk kokoskok ki ok kok sk oksk R skok sk kok sk kokoskkokosk ok sk kR ok kR ok kR kiR kiR skok ok skok sk kok sk kokoskokokoskokok sk okokskokokoskokokok ok kok kk

MDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

