
MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 77

Module – 5

8051 Interrupts and Interfacing Applications

Interrupt is one of the most important and powerful concepts and features

in microcontroller/processor applications. Almost all the real world and real time systems built around

microcontrollers and microprocessors make use of interrupts.

What is an Interrupt?

An interrupt refer to a notification, communicated to the controller, by a hardware device or software,

on receipt of which controller momentarily stops and responds to the interrupt. Whenever an interrupt

occurs the controller completes the execution of the current instruction and starts the execution of

an Interrupt Service Routine (ISR) or Interrupt Handler.

ISR is a piece of code that tells the processor or controller what to do when the interrupt occurs. After

the execution of ISR, controller returns back to the instruction it has jumped from (before the interrupt

was received). The interrupts can be either hardware interrupts or software interrupts.

Need of interrupts

An application built around microcontrollers generally has the following structure. It takes input from

devices like keypad, ADC etc; processes the input using certain algorithm; and generates an output

which is either displayed using devices like seven segment, LCD or used further to operate other devices

like motors etc. In such designs, controllers interact with the inbuilt devices like timers and other

interfaced peripherals like sensors, serial port etc. The programmer needs to monitor their status

regularly like whether the sensor is giving output, whether a signal has been received or transmitted,

whether timer has finished counting, or if an interfaced device needs service from the controller, and

so on. This state of continuous monitoring is known as polling.

In polling, the microcontroller keeps checking the status of other devices; and while doing so it does

no other operation and consumes all its processing time for monitoring. This problem can be addressed

by using interrupts. In interrupt method, the controller responds to only when an interruption occurs.

Thus in interrupt method, controller is not required to regularly monitor the status (flags, signals etc.)

of interfaced and inbuilt devices.

To understand the difference better, consider the following. The polling method is very much similar

to a salesperson. The salesman goes door-to-door requesting to buy its product or service. Like

controller keeps monitoring the flags or signals one by one for all devices and caters to whichever needs

its service. Interrupt, on the other hand, is very similar to a shopkeeper. Whosoever needs a service or

product goes to him and apprises him of his/her needs. In our case, when the flags or signals are

received, they notify the controller that they need its service.

Hardware & Software Interrupt

The interrupts in a controller can be either hardware or software. If the interrupts are generated by the

controller’s inbuilt devices, like timer interrupts; or by the interfaced devices, they are called the

hardware interrupts. If the interrupts are generated by a piece of code, they are termed as software

interrupts.

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

78 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

Multiple interrupts

What would happen if multiple interrupts are received by a microcontroller at the same instant? In such

a case, the controller assigns priorities to the interrupts. Thus the interrupt with the highest priority is

served first. However the priority of interrupts can be changed configuring the appropriate registers in

the code.

8051 Interrupts

The 8051 controller has six hardware interrupts of which five are available to the programmer. These

are as follows:

1. RESET interrupt – This is also known as Power on Reset (POR). When the RESET interrupt is

received, the controller restarts executing code from 0000H location. This is an interrupt which is not

available to or, better to say, need not be available to the programmer.

2. Timer interrupts – Each Timer is associated with a Timer interrupt. A timer interrupt notifies the

microcontroller that the corresponding Timer has finished counting.

3. External interrupts – There are two external interrupts EX0 and EX1 to serve external devices.

Both these interrupts are active low. In AT89C51, P3.2 (INT0) and P3.3 (INT1) pins are available for

external interrupts 0 and 1 respectively. An external interrupt notifies the microcontroller that an

external device needs its service.

4. Serial interrupt – This interrupt is used for serial communication. When enabled, it notifies the

controller whether a byte has been received or transmitted.

How is an interrupt serviced?

Every interrupt is assigned a fixed memory area inside the processor/controller. The Interrupt Vector

Table (IVT) holds the starting address of the memory area assigned to it (corresponding to every

interrupt).

The interrupt vector table (IVT) for AT89C51 interrupts is as follows :

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 79

Interrupt ROM Location (Hex) Pin Flag clearing

Reset 0000 9 Auto

External interrupt 0 0003 12 Auto

Timer interrupt 0 000B – Auto

External interrupt 1 0013 13 Auto

Timer interrupt 1 001B – Auto

Serial COM interrupt 0023 – Programmer clears it

When an interrupt is received, the controller stops after executing the current instruction. It transfers

the content of program counter into stack. It also stores the current status of the interrupts internally

but not on stack. After this, it jumps to the memory location specified by Interrupt Vector

Table (IVT). After that the code written on that memory area gets executed. This code is known as

the Interrupt Service Routine (ISR) or interrupt handler. ISR is a code written by the programmer to

handle or service the interrupt.

Programming Interrupts

While programming interrupts, first thing to do is to specify the microcontroller which interrupts must

be served. This is done by configuring the Interrupt Enable (IE) register which enables or disables the

various available interrupts. The Interrupt Enable register has following bits to enable/disable the

hardware interrupts of the 8051 controller.

Bit Values of IE Register of 8051 Microcontroller

To enable any of the interrupts, first the EA bit must be set to 1. After that the bits corresponding to

the desired interrupts are enabled. ET0, ET1 and ET2 bits are used to enable the Timer Interrupts 0,

1 and 2, respectively. In AT89C51, there are only two timers, so ET2 is not used. EX0 and EX1 are

used to enable the external interrupts 0 and 1. ES is used for serial interrupt.

 EA bit acts as a lock bit. If any of the interrupt bits are enabled but EA bit is not set, the interrupt will

not function. By default all the interrupts are in disabled mode.

Note that the IE register is bit addressable and individual interrupt bits can also be accessed.

Note that the IE register is bit addressable and individual interrupt bits can also be accessed.

For example –

IE = 0x81; enables External Interrupt0 (EX0)

IE = 0x88; enables Serial Interrupt

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

80 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

Setting the bits of IE register is necessary and sufficient to enable the interrupts. Next step is to specify

the controller what to do when an interrupt occurs. This is done by writing a subroutine or function

for the interrupt. This is the ISR and gets automatically called when an interrupt occurs. It is not

required to call the Interrupt Subroutine explicitly in the code.

 An important thing is that the definition of a subroutine must have the keyword interrupt followed

by the interrupt number. A subroutine for a particular interrupt is identified by this number.

 These subroutine numbers corresponding to different interrupts are tabulated below.

Number Interrupt Symbol

0 External0 EX0

1 Timer0 IT0

2 External1 EX1

3 Timer1 IT1

4 Serial ES

5 Timer2 ET2

For example : Interrupt routine for Timer1

void ISR_timer1(void) interrupt 3

{

 <Body of ISR>

}

For example : Interrupt routine for External Interrupt0 (EX0)

void ISR_ex0(void) interrupt 0

{

 <Body of ISR>

}

Note that the interrupt subroutines always have void return type. They never return a value.

Programming Timer Interrupts

1. Programming Timer Interrupts

The timer interrupts IT0 and IT1 are related to Timers 0 and 1, respectively. (Please refer 8051

Timers for details on Timer registers and modes.) The interrupt programming for timers involves

following steps :

1. Configure TMOD register to select timer(s) and its/their mode.

2. Load initial values in THx and TLx for mode 0 and 1; or in THx only for mode 2.

3. Enable Timer Interrupt by configuring bits of IE register.

4. Start timer by setting timer run bit TRx.

5. Write subroutine for Timer Interrupt. The interrupt number is 1 for Timer0 and 3 for Timer1.

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 81

6. Note that it is not required to clear timer flag TFx.

7. To stop the timer, clear TRx in the end of subroutine. Otherwise it will restart from 0000H in

case of modes 0 or 1 and from initial values in case of mode 2.

8. If the Timer has to run again and again, it is required to reload initial values within the routine

itself (in case of mode 0 and 1). Otherwise after one cycle timer will start counting from 0000H.

 Example code

Timer interrupt to blink an LED; Time delay in mode1 using interrupt method

// Use of Timer mode0 for blinking LED using interrupt method

// XTAL frequency 11.0592MHz

#include<reg51.h>

sbit LED = P1^0; //LED connected to D0 of port 1

void timer(void) interrupt 1 //interrupt no. 1 for Timer 0

{

 led=~led; //toggle LED on interrupt

 TH0=0xFC; // initial values loaded to timer

 TL0=0x66;

}

main()

{

 TMOD = 0x01; // mode1 of Timer0

 TH0 = 0xFC; // initial values loaded to timer

 TL0 = 0x66;

 IE = 0x82; // enable interrupt

 TR0 = 1; //start timer

 while(1); // do nothing

}

Programming External Interrupts

2. Programming External Interrupts

The external interrupts are the interrupts received from the (external) devices interfaced with the

microcontroller. They are received at INTx pins of the controller. These can be level triggered or edge

triggered. In level triggered, interrupt is enabled for a low at INTx pin; while in case of edge triggering,

interrupt is enabled for a high to low transition at INTx pin. The edge or level trigger is decided by the

TCON register. The TCON register has following bits:

 Bit Values of TCON Register of 8051 Microcontroller

Setting the IT0 and IT1 bits make the external interrupt 0 and 1 edge triggered respectively. By default

these bits are cleared and so external interrupt is level triggered.

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

82 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

Note: For a level trigger interrupt, the INTx pin must remain low until the start of the ISR and should

return to high before the end of ISR. If the low at INTx pin goes high before the start of ISR, interrupt

will not be generated. Also if the INTx pin remains low even after the end of ISR, the interrupt will be

generated once again. This is the reason why level trigger interrupt (low) at INTx pin must be four

machine cycles long and not greater than or smaller than this.

Following are the steps for using external interrupt:

1. Enable external interrupt by configuring IE register.

2. Write routine for external interrupt. The interrupt number is 0 for EX0 and 2 for EX1

respectively.

3.

Example 5.1

//Level trigger external interrupt

void main()

{

 IE = 0x81;

 while(1);

}

void ISR_ex0(void) interrupt 0

{

 <body of interrupt>

}

Example 5.2

//Edge trigger external interrupt

void main()

{

 IE = 0x84;

 IT1 = 1;

 while(1);

}

void ISR_ex1(void) interrupt 2

{

 <body of interrupt>

}

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 83

Programming Serial Interrupt

To use the serial interrupt the ES bit along with the EA bit is set. Whenever one byte of data is sent or

received, the serial interrupt is generated and the TI or RI flag goes high. Here, the TI or RI flag needs

to be cleared explicitly in the interrupt routine (written for the Serial Interrupt).

The programming of the Serial Interrupt involves the following steps:

1. Enable the Serial Interrupt (configure the IE register).

2. Configure SCON register.

3. Write routine or function for the Serial Interrupt. The interrupt number is 4.

4. Clear the RI or TI flag within the routine.

Example 5.3

Send ‘A’ from serial port with the use of interrupt

// Sending ‘A’ through serial port with interrupt

// XTAL frequency 11.0592MHz

void main()

{

 TMOD = 0x20;

 TH1 = -1;

 SCON = 0x50;

 TR1 = 1;

 IE = 0x90;

 while(1);

}

void ISR_sc(void) interrupt 4

{

 if(TI==1)

 {

 SBUF = ‘A’;

 TI = 0;

 }

 else

 RI = 0;

}

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

84 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

Example 5.4

// Receive data from serial port through interrupt

// XTAL frequency 11.0592MHz

void main()

{

 TMOD = 0x20;

 TH1 = -1;

 SCON = 0x50;

 TR1 = 1;

 IE = 0x90;

 while(1);

}

void ISR_sc(void) interrupt 4

{

 unsigned char val;

 if(TI==1)

 {

 TI = 0;

 }

 else

 {

 val = SBUF;

 RI = 0;

 }

}

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 85

Stepper Motor Interfacing:

Stepper motor is a widely used device that translates electrical pulses into mechanical movement.

Stepper motor is used in applications such as; disk drives, dot matrix printer, robotics etc,. The

construction of the motor is as shown in figure below.

Figure: Structure of stepper motor

It has a permanent magnet rotor called the shaft which is surrounded by a stator. Commonly used

stepper motors have four stator windings that are paired with a center – tapped common. Such motors

are called as four-phase or unipolar stepper motor. The stator is a magnet over which the electric coil

is wound. One end of the coil are connected commonly either to ground or +5V. The other end is

provided with a fixed sequence such that the motor rotates in a particular direction. Stepper motor

shaft moves in a fixed repeatable increment, which allows one to move it to a precise position.

Direction of the rotation is dictated by the stator poles. Stator poles are determined by the current sent

through the wire coils.

Step angle: Step angle is defined as the minimum degree of rotation with a single step.

No of steps per revolution = 360° / step angle Steps per second = (rpm x steps per revolution) / 60

Example: step angle = 2° No of steps per revolution = 180

Switching Sequence of Motor: As discussed earlier the coils need to be energized for the rotation.

This can be done by sending a bits sequence to one end of the coil while the other end is commonly

connected. The bit sequence sent can make either one phase ON or two phase ON for a full step

sequence or it can be a combination of one and two phase ON for half step sequence. Both are

tabulated below.

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

86 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

Full Step: Two Phase ON

Half Step (8 – sequence): The sequence is tabulated as below:

Figure: 8051 interface to stepper motor

The following example 1 to example 6 shown below will elaborate on the discussion done above:

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 87

Example 1: Write an ALP to rotate the stepper motor clockwise / anticlockwise continuously with full

step sequence.

Program:

 MOV A, #66H

BACK: MOV P1, A

 RR A

ACALL DELAY

SJMP BACK

DELAY: MOV R1, #100

UP1: MOV R2, #50

UP: DJNZ R2, UP

DJNZ R1, UP1

RET

Note: motor to rotate in anticlockwise use instruction RL A instead of RR A

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

88 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 89

Programming Stepper Motor with 8051 C

 The following examples 5 and 6 will show the programming of stepper motor using 8051 C.

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

90 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

Digital-to-Analog (DAC) converter:

The DAC is a device widely used to convert digital pulses to analog signals. In this section we will

discuss the basics of interfacing a DAC to 8051. The two method of creating a DAC is binary weighted

and R/2R ladder. The Binary Weighted DAC, which contains one resistor or current source for each

bit of the DAC connected to a summing point. These precise voltages or currents sum to the correct

output value. This is one of the fastest conversion methods but suffers from poor accuracy because of

the high precision required for each individual voltage or current. Such high- precision resistors and

current-sources are expensive, so this type of converter is usually limited to 8-bit resolution or less.

The R-2R ladder DAC, which is a binary weighted DAC that uses a repeating cascaded structure of

resistor values R and 2R. This improves the precision due to the relative ease of producing equal valued

matched resistors (or current sources). However, wide converters perform slowly due to increasingly

large RC-constants for each added R-2R link.

The first criterion for judging a DAC is its resolution, which is a function of the number of binary

inputs. The common ones are 8, 10, and 12 bits. The number of data bit inputs decides the resolution

of the DAC since the number of analog output levels is equal to 2n, where n is the number of data bit

inputs. DAC0808: The digital inputs are converter to current Iout, and by connecting a resistor to the

Iout pin, we can convert the result to voltage. The total current Iout is a function of the binary numbers

at the D0-D7 inputs of the DAC0808 and the reference current Iref , and is as follows:

Usually reference current is 2mA. Ideally we connect the output pin to a resistor, convert this current

to voltage, and monitor the output on the scope. But this can cause inaccuracy; hence an opamp is

used to convert the output current to voltage. The 8051 connection to DAC0808 is as shown in the

figure below.

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 91

Figure: 8051 connection to DAC0808

The following examples 9, 10 and 11 will show the generation of waveforms using DAC0808.

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

92 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

Analog-to-digital converter (ADC) interfacing:

ADCs (analog-to-digital converters) are among the most widely used devices for data acquisition. A

physical quantity, like temperature, pressure, humidity, and velocity, etc., is converted to electrical

(voltage, current) signals using a device called a transducer, or sensor We need an analog-to-digital

converter to translate the analog signals to digital numbers, so microcontroller can read them. ADC804

chip: ADC804 IC is an analog-to-digital converter. It works with +5 volts and has a resolution of 8

bits. Conversion time is another major factor in judging an ADC. Conversion time is defined as the

time it takes the ADC to convert the analog input to a digital (binary) number. In ADC804 conversion

time varies depending on the clocking signals applied to CLK R and CLK IN pins, but it cannot be

faster than 110μs.

Pin Description of ADC804:

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 93

CLK IN and CLK R: CLK IN is an input pin connected to an external clock source. To use the

internal clock generator (also called self-clocking), CLK IN and CLK R pins are connected to a

capacitor and a resistor and the clock frequency is determined by:

Typical values are R = 10K ohms and C =150pF. We get f = 606 kHz and the conversion time is

110μs.

Vref/2 : It is used for the reference voltage. If this pin is open (not connected), the analog input voltage

is in the range of 0 to 5 volts (the same as the Vcc pin). If the analog input range needs to be 0 to 4

volts, Vref/2 is connected to 2 volts. Step size is the smallest change can be discerned by an ADC

D0-D7: The digital data output pins. These are tri-state buffered. The converted data is accessed only

when CS =0 and RD is forced low. To calculate the output voltage, use the following formula

Dout = digital data output (in decimal),

Vin = analog voltage, and

step size (resolution) is the smallest change

Analog ground and digital ground: Analog ground is connected to the ground of the analog Vin and

digital ground is connected to the ground of the Vcc pin. To isolate the analog Vin signal from transient

voltages caused by digital switching of the output D0 – D7. This contributes to the accuracy of the

digital data output.

Vin(+) & Vin(-): Differential analog inputs where Vin = Vin (+) – Vin (-). Vin (-) is connected to

ground and Vin (+) is used as the analog input to be converted.

RD: Is “output enable” a high-to-low RD pulse is used to get the 8-bit converted data out of ADC804.

INTR: It is “end of conversion” When the conversion is finished, it goes low to signal the CPU that

the converted data is ready to be picked up.

WR: It is “start conversion” When WR makes a low-to-high transition, ADC804 starts converting the

analog input value of Vin to an 8- bit digital number.

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

94 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

CS: It is an active low input used to activate ADC804.

The following steps must be followed for data conversion by the ADC804 chip:

1. Make CS= 0 and send a L-to-H pulse to pin WR to start conversion.

2. Monitor the INTR pin, if high keep polling but if low, conversion is complete, go to next step.

3. Make CS= 0 and send a H-to-L pulse to pin RD to get the data out

The following figure shows the read and write timing for ADC804.

The following figures shows the self-clocking with the RC component for frequency and the external

frequency connected to XTAL2 of 8051.

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 95

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

96 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

ADC0808/0809 chip: ADC808 has 8 analog inputs. It allows us to monitor up to 8 different

transducers using only single chip. The chip has 8-bit data output just like the ADC804. The 8 analog

input channels are multiplexed and selected according to the values given to the three address pins, A,

B, and C. that is; if CBA=000, CH0 is selected; CBA=011, CH3 is selected and so on. The pin details

of ADC0808 are as shown in the figure below. (Explanation can be done as is with ADC0804).

Steps to Program ADC0808/0809

1. Select an analog channel by providing bits to A, B, and C addresses.

2. Activate the ALE pin. It needs an L-to-H pulse to latch in the address.

3. Activate SC (start conversion) by an H-to-L pulse to initiate conversion.

4. Monitor EOC (end of conversion) to see whether conversion is finished.

5. Activate OE (output enable) to read data out of the ADC chip. An H-to-L pulse to the OE pin will

bring digital data out of the chip.

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 97

LCD Interfacing:

LCD is finding widespread use replacing LEDs for the following reasons: The declining prices of LCD

The ability to display numbers, characters, and graphics Incorporation of a refreshing controller into

the LCD, thereby relieving the CPU of the task of refreshing the LCD Ease of programming for

characters and graphics.

Command codes

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

98 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

LCD timing diagram for reading and writing is as shown in the below figures.

Sending Data/ Commands to LCDs with Time Delay: To send any of the commands to the LCD,

make pin RS=0. For data, make RS=1. Then send a high-to-low pulse to the E pin to enable the internal

latch of the LCD.

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 99

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

100 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS 1 8 E C 4 6

M I T M Y S O R E | D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . 101

1 8 E C 4 4 MICROCONTROLLER | MODULE 5: 8051 INTERRUPTS AND INTERFACING APPLICATIONS

102 D E P T . O F E L E C T R O N I C S & C O M M U N I C A T I O N E N G G . | M I T M Y S O R E

**

