MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT 18ECA46

Module - 4

8051 Timers and Serial Port

Timers/Counters are used generally for

Time reference

Creating delay

Wave form properties measurement
Periodic interrupt generation

The 8051 has two timers/counters, they can be used either as Timers to generate a time delay
or as Event counters to count events happening outside the microcontroller

8051 has two timers, Timer 0 and Timer 1.

Timer 0 and Timer 1 are 16 bits.

8051 has an 8-bit architecture, each 16-bits timer is accessed as two separate registers of low
byte and high byte.

The low byte register is called TLO/TL1 and The high byte register is called THO/THI1.

Accessed like any other register.

THO -

- TLO -

O7 D& D5 D4 D3 D2 D1 DO

|015 D44 D12 D12 D11 D10 DS D8

Timer 0

> — THY TLY

D15 D14 D13 D12 D11 D10 D9 DB‘OT D6 D5 D4 D3I D2 D1 DO'

Timer 1

Timer in 8051 is used as timer, counter and baud rate generator. Timer always counts up irrespective

of whether it is used as timer, counter, or baud rate generator: Timer is always incremented by the

microcontroller. The time taken to count one digit up is based on master clock frequency.

If Master CLK=12 MHz,
Timer Clock frequency = Master CLK/12 = 1 MHz
Timer Clock Petiod = 1micro second

This indicates that one increment in count will take 1 microsecond.
The two timers in 8051 share two SFRs (TMOD and TCON) which control the timers, and each
timer also has two SFRs dedicated solely to itself (THO/TLO and TH1/TL1).

The following are timer related SFRs in 8051.

SFR Name Description SFR Address
THO Timer 0 High Byte BCh
TLO Timer 0 Low Byte BAh
TH1 Timer 1 High Byte BDh
TL1 Timer 1 Low Byte BBh
TCON Timer Control &8h
T™MOD Timer Mode 8%h

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. m

18EC46 MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT

TMOD Register
e Both timers 0 and 1 use the same register, called TMOD (timer mode), to set the various

timer operation modes
e TMOD is an 8-bit register
e The lower 4 bits are for Timer 0, the upper 4 bits are for Timer 1

e In cach case, the lower 2 bits are used to set the timer mode, the upper 2 bits to specify the

operation.
gt | o | s] am ae | o7 | o | e
TIMER | TINIER O
GATE When TRx (in TCON) is set and GATE = 1, TIMERACOUNTERx will run only while INTx pin is high
{hardware comrolh, When GATE = O, TIMERCOUNTER: will run only while TRx = | {soliware
conltrol).
() Timer or Counter selector. Cleared for Timer operation (inpm from internal system clock). Set for
Counter opertion (input from Tx input pin).
M1 Mode selector bit (SOTE [
MO Mude selector bt (NOTE 1),
Note 1:
Al hiLl) OFERATING MODE
¥ i n L 3-bit Timer

La-hit Timer Counter

S-hit Auto-Beload Tinen Comnler

{ Tavveer Uk TLAD ds aien S-hat TaomenCoamster contioabled |,'|E.' s standand Tonge 0 cosgeal
|1i|\._ |'I!l| [ERILE |\i1 '|'||:|-g'r .m;ﬁ ™ n.'url:m”ﬁ] IV_\ '[il:ln.': | 1'-::-|'.||41l |\il;_

A Tamwer 1) Timer Counler 1 slopped.

) |
1 0
| 1

et 1d ==

L

TCON (timer control) register

e TCON (timer control) register is an 8bit register
TCON : Timer/Counter Control Register (Bit Addressable)

| TFI | TRI | TFO | TRO | IEL | IT1 | IEQ | ITO |

TF1 TCON.7 Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by
hardware as processor vectors to the interrupt service routine.

TR1 TCON.6 Timer | run control bit. Set/cleared by software to turn Timer/Counter ON/OFF,

TFO TCON.5 Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by
hardware as processor vectors to the service routine.

TRO TCON.4 Timer 0 run control bit. Set/cleared by software to turn Timer/Counter 0 ON/OFF,

1E1 TCON.3 External Interrupt 1 edge flag. Set by hardware when External interrupt edge is detected. Cleared
by hardware when interrupt is processed.

IT1 TCON.2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/flow level triggered
External Interrupt.

1E0Q TCON.1 External Interrupt 0 edge flag. Set by hardware when External Interrupt edge detected. Cleared
by hardware when interrupt is processed.

IT0 TCON.O Interrupt 0 type control bit. Set/cleared by software to specify falling edge/low level triggered
External Interrupt.

EDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT 18ECA46

TIMER MODES

Timers can operate in four different modes. They are as follows
Timer Mode-0: In this mode, the timer is used as a 13-bit UP counter as follows.

Interrupt

=:# TLX 5 BITS LOWER] =ﬂ THX 8 BITS $I TEX —

Input pulse from

privious stage

Fig. Operation of Timer on Mode-0

The lower 5 bits of TLX and 8 bits of THX are used for the 13-bit count. Upper 3 bits of TLX are
ignored. When the counter rolls over from all 0's to all 1's, TFX flag is set and an interrupt is
generated. The input pulse is obtained from the previous stage. If TR1/0 bit is 1 and Gate bit is 0,
the counter continues counting up. If TR1/0 bit is 1 and Gate bit is 1, then the operation of the
counter is controlled by input. This mode is useful to measure the width of a given pulse fed to input.

Timer Mode-1: This mode is similar to mode-0 except for the fact that the Timer operates in 16-bit

mode.
Interrupt

Input pulse from

pIivious stage
Fig: Operation of Timer in Mode 1

Timer Mode-2: (Auto-Reload Mode): This is an 8 bit counter/timer operation. Counting is
performed in TLX while THX stores a constant value. In this mode when the timer overflows i.e.
TLX becomes FFH, it is fed with the value stored in THX. For example, if we load THX with 50H
then the timer in mode 2 will count from 50H to FFH. After that 50H is again reloaded. This mode is
useful in applications like fixed time sampling.

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. m

18EC46 MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT

Interrupt
—= TLX 8bits = TFRX —=
Input pulse
From previous i
stage il
THX 8bits

Fig: Operation of Timer in Mode 2
Timer Mode-3: Timer 1 in mode-3 simply holds its count. The effect is same as setting TR1=0.
Timer0O in mode-3 establishes TLO and THO as two separate counters.

Interrupt
TS TLO 8bits TH ——=
Input pulse
From previous
stage
Interrupt
f12—1 —= THO 8bits T |—
|

TR1 bitin TCON

Fig: Operation of Timer in Mode 3
Control bits TR1 and TF1 are used by Timer-0 (higher 8 bits) (THO) in Mode-3 while TRO and TFO
are available to Timer-0 lower 8 bits (TLO).

PROGRAMMING 8051 TIMERS IN ASSEMBLY
In order to program 8051 timers, it is important to know the calculation of initial count value to be
stored in the timer register. The calculations are as follows.
In any mode, Timer Clock period = 1/Timer Clock Frequency.
=1/ Master Clock Frequency/12)

1. Mode 1 (16 bit timer/counter)

Value to be loaded in decimal = 65536 — (Delay required/Timer clock petiod)
Convert the answer into hexadecimal and load onto THx and TLx register.
(65536D = FFFFH+1)

2. Mode 0 (13 bit timer/counter)

Value to be loaded in decimal = 8192 — (Delay required/Timer clock petriod)
Convert the answer into hexadecimal and load onto THx and TLx register.
(8192D = 1FFFH+1)

mDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT 18ECA46

3. Mode 2 (8 bit auto reload)
Value to be loaded in decimal = 256 — (Delay required/Timer clock period)

Convert the answer into hexadecimal and load onto THx register. Upon starting the timer this value
from THx will be reloaded to TLx register. (256D = FFH+1)

Steps for programming timers in 8051

Mode 1:

Load the TMOD value register indicating which timer (0 or 1) is to be used and which timer
mode is selected.

Load registers TL and TH with initial count values.

Start the timer by the instruction “SETB TRO” for timer 0 and “SETB TR1” for timer 1.

® Keep monitoring the timer flag (TF) with the “JNB TFx, target” instruction to see if it is
raised. Get out of the loop when TF becomes high.

® Stop the timer with the instructions “CLR TRO” or “CLR TR1”, for timer 0 and timer
1, respectively.

® (lear the TF flag for the next round with the instruction “CLR TF0” or “CLR TF1”, for
timer 0 and timer 1, respectively.

® (Go back to step 2 to load TH and TL again.

Mode 0:

The programming techniques mentioned here are also applicable to counter/timer mode 0. The only

difference is in the number of bits of the initialization value.

Mode 2:

Load the TMOD value register indicating which timer (0 or 1) is to be used; select timer
mode 2.

Load TH register with the initial count value. As it is an 8-bit timer, the valid range is from
00 to FFH.

® Start the timer.
® Keep monitoring the timer flag (TFx) with the “JNB TFx, target” instruction to see if it is
raised. Get out of the loop when TFx goes high.
e C(lear the TFx flag.
® (o back to step 4, since mode 2 is auto-reload.
Example 4-1

Indicate which mode and which timer are selected for each of the following.
(@) MOV TMOD, #01H (b) MOV TMOD, #20H (c) MOV TMOD, #12H
Solution:

We convert the value from hex to binary. From Figure 9-3 we have:
(a) TMOD = 00000001, mode 1 of timer 0 is selected.
(b) TMOD = 00100000, mode 2 of timer 1 is selected.

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. E

18EC46 MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT

(c) TMOD = 00010010, mode 2 of timer 0, and mode 1 of timer 1 are selected

Example 4-2
Find the timer’s clock frequency and its period for various 8051-based system, with the crystal
frequency 11.0592 MHz when C/T bit of TMOD is 0.

El K2

1/12 x 11.0529 MHz = 921.6 MHz;
T =1/921.6 kHz = 1.085 us

Example 4-3
In the following program, we create a square wave of 50% duty cycle (with equal portions high and
low) on the P1.5 bit. Timer 0 is used to generate the time delay. Analyze the program

MOV TMOD,#01 ;Timer 0, mode 1(16-bit mode)

HERE: MOV TLO,#0F2H ;TLO=F2H, the low byte
MOV THO,#0FFH ;THO=FFH, the high byte
CPL P1.5 ;toggle P1.5
ACALL DELAY
SJMP HERE
DELAY: SETB TRO ;start the timer 0
AGAIN: JNB TFO,AGAIN ;monitor timer flag O ;until it rolls over
CLR TRO ;stop timer 0
CLR TFO sclear timer O flag
RET

In the above program notice the following step.

1. TMOD is loaded.

2. FFF2H is loaded into THO-TT.0.

3. P1.5 is toggled for the high and low portions of the pulse.

4. The DELAY subroutine using the timer is called.

5. In the DELAY subroutine, timer 0 is started by the SETB TRO instruction.

6. Timer 0 counts up with the passing of each clock, which is provided by the crystal oscillator. As
the timer counts up, it goes through the states of FFF3,FFF4, FFF5, FFF6, FFF7, FFEFS, FEFE9,
FFFA, FFFB, and so on until it reaches FFFFH. One more clock rolls it to 0, raising the timer flag
(TFO=1).

At that point, the JNB instruction falls through.

HDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT 18ECA46

7. Timer 0 is stopped by the instruction CLR TRO. The DELAY subroutine ends, and the process is
repeated.

Notice that to repeat the process, we must reload the TL and TH registers, and start the process is
repeated

Example 4-4

In Example 9-4, calculate the amount of time delay in the DELAY subroutine generated by the timer.
Assume XTAL = 11.0592 MHz.

Solution:

The timer works with a clock frequency of 1/12 of the XTAL frequency; therefore, we have 11.0592
MHz / 12 = 921.6 kHz as the timer frequency. As a result, each clock has a period of T
=1/921.6kHz = 1.085us. In other words, Timer O counts up each 1.085 us resulting in delay =
number of counts X 1.085us.

The number of counts for the roll over is FFFFH — FFF2H = ODH (13decimal). However, we add
one to 13 because of the extra clock needed when it rolls over from FFFF to 0 and raise the TT flag.
This gives 14X 1.085us = 15.19us for half the pulse. For the entire period it is T = 2X 15.19us =
30.38us as the time delay generated by the timer.

Example 4-5
The following program generates a square wave on P1.5 continuously using timer 1 for a time delay.
Find the frequency of the square wave if XTAL = 11.0592 MHz. In your calculation do not include
the overhead due to Instructions in the loop.

MOV TMOD,#10 ;Timer 1, mod 1 (16-bitmode)

AGAIN: MOV TI1.1,#34H ;TL1=34H, low byte of timer
MOV TH1,#76H ;TH1=76H, high byte timer
SETB TR1 ;start the timer 1

BACK: JNB TF1,BACK ;till timer rolls over
CLR TR1 ;stop the timer 1
CPL P1.5 s;comp. pl. to get hi, lo
CLR TF1 sclear timer flag 1
SIMP AGAIN ;is not auto-reload

Solution:

Since FFFFH — 7634H = 89CBH + 1 = 89CCH and 89CCH = 35276 clock count and 35276

% 1.085 us = 38.274 ms for half of the square wave. The frequency = 13.064Hz. Also notice that the
high portion and low portion of the square wave pulse are equal. In the above calculation, the
overhead due to all the instruction in the loop is not included.

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. m

18EC46 MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT

Example 4-6
Write a program to continuously generate a square wave of 2 kHz frequency on pin P1.5 using timer
1. Assume the crystal oscillator frequency to be 12 MHz.

The period of the square wave is T = 1/(2 kHz) = 500 ps. Each half pulse = 250 ps.
The value n for 250 us is: 250 us /1 pus = 250 65536 - 250 = FFO6H. TL = 06H and TH = OFFH.

MOV TMOD,#10 ;Timer 1, mode 1

AGAIN: MOV TL1,#06H ;TLO = O6GH
MOV TH1,#0FFH ;THO = FFH
SETB TR1 ;Start timer 1
BACK: JNB TF1,BACK ;Stay until timer rolls over
CLR TR1 ;Stop timer 1
CPL P1.5 ;Complement P1.5 to get Hi, Lo
CLR TF1 ;Clear timer flag 1
SJMP AGAIN ;Reload timer
Example4-6

Write a program segment that uses timer 1 in mode 2 to toggle P1.0 once whenever the counter
reaches a count of 100. Assume the timer clock is taken from external source P3.5 (T1).
The TMOD value is 60H The initialization value to be loaded into TH1 is 256 - 100 = 156 = 9CH

MOV TMOD, #60h ;Counterl, mode 2, C/T°= 1
MOV THI1, #9Ch ;Counting 100 pulses

SETB P3.5 ;Make T1 input
SETB TRI1 ;Start timer 1

BACK: JNB TF1, BACK ;Keep doing it if TF = 0
CPL P1.0 ;Toggle port bit
CLR TF1 ;Clear timer overflow flag
SJIMP BACK ;Keep doing it

mDEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT 18ECA46

SERIAL COMMUNICATION

The 8051 microcontroller is parallel device that transfers eight bits of data simultaneously over eight
data lines to parallel I/O devices. Parallel data transfer over a long is very expensive. Hence, a serial
communication is widely used in long distance communication. In serial data communication, 8-bit
data is converted to serial bits using a parallel in serial out shift register and then it is transmitted over
a single data line. The data byte is always transmitted with least significant bit first.

Basics of serial data communication
Communication Links

1. Simplex communication link: In simplex transmission, the line is dedicated for transmission.
The transmitter sends and the receiver receives the data.

Receiver

¥

Transmitter

2. Half duplex communication link: In half duplex, the communication link can be used for
either transmission or reception. Data is transmitted in only one direction at a time.

Transmitter Receiver

_‘\\\- /—

Receiver I — | Transmitter

3. Full duplex communication link: If the data is transmitted in both ways at the same time, it is
a full duplex ie. transmission and reception can proceed simultaneously. This communication
link requires two wires for data, one for transmission and one for reception.

Transmitter Receiver

L J

Recerver Transmutter

F

Types of Serial communication:

Serial data communication uses two types of communication.

1. Synchronous serial data communication: In this transmitter and receiver are synchronized. It
uses a common clock to synchronize the receiver and the transmitter. First the synch
character is sent and then the data is transmitted. This format is generally used for high speed
transmission. In Synchronous serial data communication a block of data is transmitted at a
time.

Transmitter [sync| [T TTTT11] Receiver

] I

) | Clock)

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. m

18EC46 MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT

2. Asynchronous Serial data transmission: In this, different clock sources are used for
transmitter and receiver. In this mode, data is transmitted with start and stop bits. A
transmission begins with start bit, followed by data and then stop bit. For error checking
purpose parity bit is included just prior to stop bit. In Asynchronous serial data
communication a single byte is transmitted at a time.

Transmitter | | Start [DO[D1[D2[D3[D4[D5][D6[D7 [D8 [Stop Receiver
T Data T
Clock 1 Clock2

Baud rate: The rate at which the data is transmitted is called baud or transfer rate. The baud rate is
the reciprocal of the time to send one bit. In asynchronous transmission, baud rate is not equal to
number of bits per second. This is because; each byte is preceded by a start bit and followed by parity
and stop bit. For example, in synchronous transmission, if data is transmitted with 9600 baud, it
means that 9600 bits are transmitted in one second. For bit transmission time = 1 second/ 9600 =
0.104 ms.

8051 SERIAL COMMUNICATION
Three special function registers support serial communication.

1. SBUF Register: Serial Buffer (SBUF) register is an 8-bit register. It has separate SBUF registers
for data transmission and for data reception. For a byte of data to be transferred via the TXD
line, it must be placed in SBUF register. Similarly, SBUF holds the 8-bit data received by the
RXD pin and read to accept the received data.

2. SCON register: The contents of the Serial Control (SCON) register are shown below. This
register contains mode selection bits, serial port interrupt bit (TT and RI) and also the ninth data
bit for transmission and reception (TB8 and RBS).

SM0 SCON.7 Serial port mode specifier
SM1 SCON.6 Serial port mode specifier
SM2 SCON.5 Used for multiprocessor communication
REN SCON.4 Set/cleared by software to enable/disable reception
TBE SCON.3 Not widely used
RB8 SCON.2 Not widely used
TI SCON.1 Transmit interrupt flag. Set by HW at the
begin of the stop bit mode 1. And cleared by SW
RI SCON.O Receive interrupt flag. Set by HW at the

begin of the stop bit mode 1. And cleared by SW

Note: Muake SM2, TBS, and RBS8 =0

SMO0, SM1:They determine the framing of data by specifying the number of bits per character, and
the start and stop bits

SMo sM1
0 0 Serial Mode 0
o N Serial Mode 1, 8-bi data,
1 stop 1 start kit
1 0 Serial Mode2______
1 1 Serial Mode 3

DEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT 18ECA46

SM2: This enables the multiprocessing capability of the 8051

REN (receive enable) : It is a bit-addressable register [J When it is high, it allows 8051 to receive
data on RxD pin [] If low, the receiver is disable

TI (transmit interrupt) : When 8051 finishes the transfer of 8-bit character [It raises TI flag to
indicate that it is ready to transfer another byte [TT bit is raised at the beginning of the stop bit [

RI (receive interrupt) : When 8051 receives data serially via RxD, it gets rid of the start and stop
bits and places the byte in SBUF register [It raises the RI flag bit to indicate that a byte has been
received and should be picked up before it is lost [Rl is raised halfway through the stop bit.

3. PCON register: The SMOD bit (bit 7) of PCON register controls the baud rate in
asynchronous mode transmission

PCON : Power Control Register (Not Bit Addressable)

[SMOD] | [GFl | GiFQ D 131

SMOD PCOMN.T Double baud rate bit, IFSMOD = 1, the baud rate is doubled when the serial part is used in mode
[, 2 and 3.
PCOM.G Not implemented, reserved for futur used®
- PCOM.5 Not implemented, reserved for futur used*

- PCOMN4 Notimplemented, reserved for futur used®

GEl PCOMNS3 General purpose bit.

GiFn PCOMN.2 General purpose bit,

PD PCON.T Power Down bit. I set, the escillator 1s stopped. A reset or an interrupt (83C 154 and 83C154D
only) can cancel this mode (Note 1),

DL PCON.O IDLE bit. If set the activity CPU is stopped. A reset or an interrupt can cancel this mode (See
Mote 1.

SERIAL COMMUNICATION MODES

1. Mode 0: In this mode serial port runs in synchronous mode. The data is transmitted and received
through RXD pin and TXD is used for clock output. In this mode the baud rate is 1/12 of clock
frequency.

2. Mode 1: In this mode SBUF becomes a 10 bit full duplex transceiver. The ten bits are 1 start bit,
8 data bit and 1 stop bit. The interrupt flag TT/RI will be set once transmission or reception is
over. In this mode the baud rate is variable and is determined by the timer 1 overflow rate. Baud
rate = [2smod/32] x Timer 1 overflow Rate = [2smod/32] x [Oscillator Clock Frequency] / [12 x
[256 — [TH1]]]

3. Mode 2: This is similar to mode 1 except 11 bits are transmitted or received. The 11 bits are, 1
start bit, 8 data bit, a programmable 9th data bit, 1 stop bit. Baud rate = [2smod/64] x Oscillator
Clock Frequency.

4. Mode 3: This is similar to mode 2 except baud rate is calculated as in mode 1

RS-232 standards: To allow compatibility among data communication equipment made by various
manufactures, an interfacing standard called RS232 was set by the Electronics Industries Association
(EIA) in 1960. Since the standard was set long before the advent of logic family, its input and output
voltage levels are not TTL compatible. In RS232, a logic one (1) is represented by -3 to -25V and

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. n

18EC46 MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT

referred as MARK while logic zero (0) is represented by +3 to +25V and referred as SPACE. For
this reason to connect any RS232 to a microcontroller system we must use voltage converters such as
MAX232 to convert the TTL logic level to RS232 voltage levels and vice-versa. MAX232 IC chips
are commonly referred as line drivers. In RS232 standard we use two types of connectors. DB9
connector or DB25 connector.

RS232 Connector DB-9 RS232 DB-9 Pins

B
3

Description

Data carrier detect (-DCD)
Received data (RxD)
Transmitted data (TxD)
Data terminal ready (DTR)
Signal ground (GND)

Data set ready (-DSR)
Request to send (-RTS)
Clear to send (-CTS)

Ring indicator (RI)

OV IOINOWN DIWIN| -

DEZ25 Male Connector

The 8051 connection to MAX232 is as follows.

The 8051 has two pins that are used specifically for transferring and receiving data serially. These two
pins are called TXD, RXD. Pin 11 of the 8051 (P3.1) assigned to TXD and pin 10 (P3.0) is
designated as RXD. These pins TTL compatible; therefore they require line driver (MAX 232) to
make them RS232 compatible. MAX 232 converts RS232 voltage levels to TTL voltage levels and
vice versa. One advantage of the MAX232 is that it uses a +5V power source which is the same as
the source voltage for the 8051. The typical connection diagram between MAX 232 and 8051 is
shown below

+ J__ 1 Hu232
a T |, .
P 4
a2 T 5
5
Tlin Tlout
[
1 = - 14 -
13 Rlout ﬂ n is ﬂ w12
TZin TZout
|
" L~ 7 DB-9
R2out - RZint
] = | 8

MAX232 has two

3
:
K

R5231 side

sets of line drivers

DEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT 18ECA46

SERIAL COMMUNICATION PROGRAMMING IN ASSEMBLY AND C.
Steps to programming the 8051 to transfer data serially
1. The TMOD register is loaded with the value 20H, indicating the use of the Timer 1 in mode
2 (8-bit auto reload) to set the baud rate.
2. The THI is loaded with one of the values in table 5.1 to set the baud rate for serial data
transfer.
3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an8-bit data
is framed with start and stop bits.
TR1 is set to 1 start timer 1.
T1 is cleared by the “CLR TI” instruction.
The character byte to be transferred serially is written into the SBUF register.
The TI flag bit is monitored with the use of the instruction JNB TI, target to see if the

N e

character has been transferred completely.
8. To transfer the next character, go to step 5.

Example 4.7

With XTAL = 11.0592 MHz, find the TH1 value needed to have thefollowing baud rates. (a) 9600
(b) 2400 (c) 1200

Solution:

The machine cycle frequency of 8051 = 11.0592 / 12 = 921.6 kHz,and 921.6 kHz / 32 = 28,800 Hz
is frequency by UART to timer 1 toset baud rate.

(2) 28,800 / 3 = 9600 where -3 = FD (hex) is loaded into TH1

(b) 28,800 / 12 =2400 where -12 = F4 (hex) is loaded into TH1

(c) 28,800 / 24 = 1200 where -24 = E8 (hex) is loaded into TH1

Example 4.8
Write a program for the 8051 to transfer letter ‘A’ serially at 4800- baud rate, 8 bit data, 1 stop bit
continuously.
Solution:
MOV TMOD, #20H stimer 1,mode 2(auto reload)
MOV THI1, #-6 ;4800 baud rate
MOV SCON, #50H ;8-bit, 1 stop, REN enabled
SETB TRI1 ;start timer 1
AGAIN: MOV SBUF, #°A” sletter “A”to transfer
HERE: JNB TI, HERE ;wait for the last bit
CLR TI ;clear TT for next char
SIMP AGAIN ;keep sending A

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG. n

18EC46 MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT

Example 4.9

Write a program for the 8051 to transfer “YES” serially at 9600 baud, 8-bit data, 1 stop bit, do this

continuously
MOV TMOD, #20H
MOV THI1, #-3
MOV SCON, #50H

stimer 1,mode 2(auto reload)
;9600 baud rate

;8-bit, 1 stop, REN enabled
;start timer 1

stransfer <Y”

stransfer “E”

stransfer “S”

;keep doing it serial data transfer subroutine
;load SBUF

;wait for the last bit
;get ready for next byte

Write a C program for 8051 to transfer the letter “A” serially at 4800 baud continuously. Use 8-bit data and 1

SETB TR1
AGAIN: MOV A, #°Y”
ACALL TRANS
MOV A, #’E”
ACALL TRANS
MOV A, #7§”
ACALL TRANS
SIMP AGAIN
TRANS: MOV SBUF,A
HERE: JNB TLHERE
CLR TI
RET
Example 4.10
stop bit.
Solution:

#include <reg51.h>
void main(void)

{
TMOD=0x20;
TH1=0xFA;
SCON=0x50;
TR1=1;
while (1) {
SBUF="A’;
while (TT==0);
TI=0;
h
b

//use Timer 1, mode 2
/ /4800 baud rate

/ /place value in buffer

DEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT 18ECA46

Example 4.11

Write an 8051 C program to transfer the message “YES” serially at 9600 baud, 8-bit data, 1 stop bit.

Do this continuously.
Solution:

#include <reg51.h>

void SerTx(unsigned char);
void main(void)

{
TMOD=0x20; //use Timer 1, mode 2
TH1=0xFD; / /9600 baud rate
SCON=0x50;
TR1=1; //start timer
While (1) {
SerTx(Y);
SerTx(‘E’);
SerTx(‘S");
§
J
void SerTx(unsigned char x)
{
SBUF=x; //place value in buffer
While (TT==0); / /wait until transmitted
TI=0;
}

MIT MYSORE | DEPT. OF ELECTRONICS & COMMUNICATION ENGG.

18EC46 MICROCONTROLLER | MODULE4:8051 TIMERS AND SERIAL PORT

DEPT. OF ELECTRONICS & COMMUNICATION ENGG. IMIT MYSORE

