

Sri Sai Vidya Vikas Shikshana Samithi ®

SAI VIDYA INSTITUTE OF TECHNOLOGY
Approved by AICTE, New Delhi, Affiliated to VTU, Recognized by Govt. of Karnataka

Accredited by NBA
RAJANUKUNTE, BENGALURU 560 064, KARNATAKA

Phone: 080-28468191/96/97/98 ,Email: info@saividya.ac.in, URLwww.saividya.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (CSE)

Module -3

Chapter -1 Inheritance

 In object-oriented programming, inheritance is a fundamental concept that enables the

creation of hierarchical classifications.

 It involves the creation of a general class (superclass) defining common traits for a

group of related items.

 Other, more specific classes (subclasses) can then inherit from this superclass, adding

unique elements while retaining the inherited traits.

 In Java terminology, the inherited class is the superclass, and the inheriting class is

the subclass.

1.1 Inheritance Basics
To inherit a class, you simply incorporate the definition of one class into another by

using the extends keyword.

// A simple example of inheritance.

// Create a superclass.

class A {

int i, j;

void showij() {

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A {

int k;

void showk() {

mailto:info@saividya.ac.in
http://www.saividya.ac.in/

System.out.println("k: " + k);

}

void sum() {

System.out.println("i+j+k: " + (i+j+k));

}

}

class SimpleInheritance {

public static void main(String[] args) {

A superOb = new A();

B subOb = new B();

// The superclass may be used by itself.

superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");

superOb.showij();

System.out.println();

/* The subclass has access to all public members of

its superclass. */

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb.showij();

subOb.showk();

System.out.println();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}

}

The output from this program is shown here:

Contents of superOb:

i and j: 10 20

Contents of subOb:

i and j: 7 8

k: 9

Sum of i, j and k in subOb:

i+j+k: 24

The subclass B includes all of the members of its superclass, A. This is why subOb can

access i and j and call showij(). Also, inside sum(), i and j can be referred to directly,

as if they were part of B.

Even though A is a superclass for B, it is also a completely independent, stand-alone class.

Being a superclass for a subclass does not mean that the superclass cannot be used by

itself. Further, a subclass can be a superclass for another subclass.

The general form of a class declaration that inherits:

 class subclass-name extends superclass-name {

// body of class

}

1.2 Member Access and Inheritance

Although a subclass includes all of the members of its superclass, it cannot access those

members of the superclass that have been declared as private. For example, consider the

following simple class hierarchy:

/* In a class hierarchy, private members remain

private to their class.

This program contains an error and will not

compile.

*/

// Create a superclass.

class A {

int i; // default access

private int j; // private to A

void setij(int x, int y) {

i = x;

j = y;

}

}

// A's j is not accessible here.

class B extends A {

int total;

void sum() {

total = i + j; // ERROR, j is not accessible here

}

}

class Access {

public static void main(String[] args) {

B subOb = new B();

subOb.setij(10, 12);

subOb.sum();

System.out.println("Total is " + subOb.total);

}

}

a

1.3 A More Practical Example

Here, the final version of the Box class developed in the preceding chapter will be extended to

include a fourth component called weight. Thus, the new class will contain a box’s width,

height, depth, and weight.

// This program uses inheritance to extend Box.

class Box {

double width;

double height;

double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// Here, Box is extended to include weight.

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight

BoxWeight(double w, double h, double d, double m) {

width = w;

height = h;

depth = d;

weight = m;

}

}

class DemoBoxWeight {

public static void main(String[] args) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

}

}

The output from this program is shown here:

Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

2. Using super

 In Java, the super keyword is used to refer to the immediate parent class object.

 super has two general forms.

 The first calls the superclass’ constructor.

 The second is used to access a member of the superclass that has been hidden by a member

of a subclass.

Pa
rt

 I

2.1 Using super to Call Superclass Constructors

 A subclass can call a constructor defined by its superclass by use of the following form of

super:

 super(arg-list);

 Here, arg-list specifies any arguments needed by the constructor in the superclass. super() must always be the

first statement executed inside a subclass’ constructor.

// A complete implementation of BoxWeight.

 class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// BoxWeight now fully implements all constructors.

class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

weight = -1;

}

// constructor used when cube is created

BoxWeight(double len, double m) {

super(len);

weight = m;

}

}

class DemoSuper {

public static void main(String[] args) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

BoxWeight mybox3 = new BoxWeight(); // default

BoxWeight mycube = new BoxWeight(3, 2);

BoxWeight myclone = new BoxWeight(mybox1);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

System.out.println();

vol = mybox3.volume();

System.out.println("Volume of mybox3 is " + vol);

System.out.println("Weight of mybox3 is " + mybox3.weight);

System.out.println();

Pa
rt

 I

vol = myclone.volume();

System.out.println("Volume of myclone is " + vol);

System.out.println("Weight of myclone is " + myclone.weight);

System.out.println();

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

System.out.println("Weight of mycube is " + mycube.weight);

System.out.println();

}

}

This program generates the following output:

Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

Volume of mybox3 is -1.0

Weight of mybox3 is -1.0

Volume of myclone is 3000.0

Weight of myclone is 34.3

Volume of mycube is 27.0

Weight of mycube is 2.0

Note: // construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

2.2 A Second Use for super

The second form of super, it always refers to the superclass of the subclass in which it is used.

This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.

This second form of super is most applicable to situations in which member names of a subclass hide members by

the same name in the superclass.

Consider this simple class hierarchy:

// Using super to overcome name hiding.

class A {

int i;

}

// Create a subclass by extending class A.

class B extends A {

int i; // this i hides the i in A

B(int a, int b) {

super.i = a; // i in A

i = b; // i in B

}

void show() {

System.out.println("i in superclass: " + super.i);

System.out.println("i in subclass: " + i);

}

}

class UseSuper {

public static void main(String[] args) {

B subOb = new B(1, 2);

subOb.show();

}

}

This program displays the following:

i in superclass: 1

i in subclass: 2

3. Creating a Multilevel Hierarchy
Given three classes called A, B, and C, C can be a subclass of B, which is a subclass of A. In this case, C

inherits all aspects of B and A. To see how a multilevel hierarchy can be useful, consider the following

program. In it, the subclass BoxWeight is used as a superclass to create the subclass called Shipment.

Shipment inherits all of the traits of BoxWeight and Box, and adds a field called cost, which holds the cost

of shipping such a parcel.

// Extend BoxWeight to include shipping costs.

// Start with Box.

class Box {

private double width;

private double height;

private double depth;

Pa
rt

 I

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// Add weight.

class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

weight = -1;

}

// constructor used when cube is created

BoxWeight(double len, double m) {

super(len);

weight = m;

}

}

// Add shipping costs.

class Shipment extends BoxWeight {

double cost;

// construct clone of an object

Shipment(Shipment ob) { // pass object to constructor

super(ob);

cost = ob.cost;

}

// constructor when all parameters are specified

Shipment(double w, double h, double d,

double m, double c) {

super(w, h, d, m); // call superclass constructor

cost = c;

}

// default constructor

Shipment() {

super();

cost = -1;

}

// constructor used when cube is created

Shipment(double len, double m, double c) {

super(len, m);

cost = c;

}

}

class DemoShipment {

public static void main(String[] args) {

Shipment shipment1 =

new Shipment(10, 20, 15, 10, 3.41);

Shipment shipment2 =

new Shipment(2, 3, 4, 0.76, 1.28);

double vol;

vol = shipment1.volume();

System.out.println("Volume of shipment1 is " + vol);

System.out.println("Weight of shipment1 is "

+ shipment1.weight);

System.out.println("Shipping cost: $" + shipment1.cost);

System.out.println();

Pa
rt

 I

vol = shipment2.volume();

System.out.println("Volume of shipment2 is " + vol);

System.out.println("Weight of shipment2 is "

+ shipment2.weight);

System.out.println("Shipping cost: $" + shipment2.cost);

}

}

The output of this program is shown here:

Volume of shipment1 is 3000.0

Weight of shipment1 is 10.0

Shipping cost: $3.41

Volume of shipment2 is 24.0

Weight of shipment2 is 0.76

Shipping cost: $1.28

4. When Constructors Are Executed
Given a subclass called B and a superclass called A, is A’s constructor executed before B’s, or vice versa? The
answer is that in a class hierarchy, constructors complete their execution in order of derivation, from superclass to
subclass.

 Further, since super() must be the first statement executed in a subclass’ constructor, this order is the same
whether or not super() is used. If super() is not used, then the default or parameterless constructor of each
superclass will be executed.

The following program illustrates when constructors are executed:

// Demonstrate when constructors are executed.

// Create a super class.

class A {

A() {

System.out.println("Inside A's constructor.");

}

}

// Create a subclass by extending class A.

class B extends A {

B() {

System.out.println("Inside B's constructor.");

}

}

// Create another subclass by extending B.

class C extends B {

C() {

System.out.println("Inside C's constructor.");

}

}

class CallingCons {

public static void main(String[] args) {

C c = new C();

}

Pa
rt

 I

}

The output from this program is shown here:

Inside A's constructor

Inside B's constructor

Inside C's constructor

5. Method Overriding

Method overriding occurs when a subclass provides a specific implementation for a method that is

already defined in its superclass.

 Conditions for Method Overriding:

Same method name

Same method type signature (parameters and return type)

Result of Method Overriding:

The method in the subclass is said to override the method in the superclass.

When the overridden method is called through the subclass, it always refers to the version defined in

the subclass.

Key Point:

The version of the method defined by the superclass is hidden when called through the subclass.

 Consider the following:

// Method overriding.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// display k – this overrides show() in A

void show() {

System.out.println("k: " + k);

}

}

class Override {

public static void main(String[] args) {

B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}

}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined within B
is used. That is, the version of show() inside B overrides the version declared in A.
If you wish to access the superclass version of an overridden method, you can do so by using super.

Method overriding occurs only when the names and the type signatures of the two methods are identical. If
they are not, then the two methods are simply overloaded.
For example, consider this modified version of the preceding example:

// Methods with differing type signatures are overloaded – not

// overridden.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// overload show()

void show(String msg) {

System.out.println(msg + k);

}

}

Pa
rt

 I

class Override {

public static void main(String[] args) {

B subOb = new B(1, 2, 3);

subOb.show("This is k: "); // this calls show() in B

subOb.show(); // this calls show() in A

}

}

The output produced by this program is shown here:

This is k: 3

i and j: 1 2

The version of show() in B takes a string parameter. This makes its type signature
different from the one in A, which takes no parameters. Therefore, no overriding (or name
hiding) takes place. Instead, the version of show() in B simply overloads the version of
show() in A.

6. Dynamic Method Dispatch

 Method overriding in Java forms the foundation for dynamic method dispatch.

 Dynamic method dispatch is the mechanism by which a call to an overridden method is

resolved at run time, rather than compile time.

 Dynamic method dispatch is crucial for achieving run-time polymorphism in Java.

 A superclass reference variable can refer to a subclass object.

 When an overridden method is called through a superclass reference, Java determines the

version to execute based on the type of the object being referred to at run time.

 It is the type of the object (not the type of the reference variable) that determines which

version of an overridden method will be executed.

 Different versions of an overridden method are called when different types of objects are

referred to through a superclass reference variable.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch

class A {

void callme() {

System.out.println("Inside A's callme method");

}

}

class B extends A {

// override callme()

void callme() {

System.out.println("Inside B's callme method");

}

}

class C extends A {

// override callme()

void callme() {

System.out.println("Inside C's callme method");

}

}

class Dispatch {

public static void main(String[] args) {

A a = new A(); // object of type A

B b = new B(); // object of type B
C c = new C(); // object of type C

A r; // obtain a reference of type A r =

a; // r refers to an A object

r.callme(); // calls A's version of callme

r = b; // r refers to a B object r.callme(); //

calls B's version of callme

r = c; // r refers to a C object r.callme(); //

calls C's version of callme

}

}

The output from the program is shown here:

Inside A's callme method

Inside B's callme method

Inside C's callme method

6.1 Applying Method Overriding

 The following program creates a superclass called Figure that stores the dimensions of a two-

dimensional object. It also defines a method called area() that computes the area of an object.

 The program derives two subclasses from Figure.

 The first is Rectangle and the second is Triangle.

 Each of these subclasses overrides area() so that it returns the area of a rectangle and a

triangle, respectively.

Pa
rt

 I

// Using run-time polymorphism. class Figure {

double dim1;

double dim2;

Figure(double a, double b) {

dim1 = a;

dim2 = b;

}

double area() {

System.out.println("Area for Figure is undefined.");

return 0;

}

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

super(a, b);

}

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

Triangle(double a, double b) {

super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2;

}

}

class FindAreas {

public static void main(String[] args) {

Figure f = new Figure(10, 10);

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref;

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

figref = f;

System.out.println("Area is " + figref.area());

}

Pa
rt

 I

}

The output from the program is shown here:

Inside Area for Rectangle.

Area is 45

Inside Area for Triangle.

Area is 40

Area for Figure is undefined.

Area is 0

7. Using Abstract Classes

 Java abstract class is a class that can not be initiated by itself, it needs to be subclassed by

another class to use its properties.

 An abstract class is declared using the “abstract” keyword in its class definition.

 The main purpose of an abstract class is to provide a common structure for its subclasses,

ensuring that they implement certain essential methods.

 An abstract class can also have constructors, data members, and static methods

 To declare an abstract method, use this general form:

abstract type name(parameter-list);

Using an abstract class, you can improve the Figure class shown earlier. Since there is no meaningful concept of

area for an undefined two-dimensional figure, the following version of the program declares area() as abstract

inside Figure. This, of course, means that all classes derived from Figure must override area().

// Using abstract methods and classes.

abstract class Figure {

double dim1;

double dim2;

Figure(double a, double b) {

dim1 = a;

dim2 = b;

}

// area is now an abstract method

abstract double area();

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

super(a, b);

}

Pa
r

I

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

Triangle(double a, double b) {

super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2;

}

}

class AbstractAreas {

public static void main(String[] args) {

// Figure f = new Figure(10, 10); // illegal now

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref; // this is OK, no object is created

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

}

}

As the comment inside main() indicates, it is no longer possible to declare objects of

type Figure, since it is now abstract. And, all subclasses of Figure must override area(). To

prove this to yourself, try creating a subclass that does not override area(). You will receive a

compile-time error.

Although it is not possible to create an object of type Figure, you can create a reference

variable of type Figure.

 The variable figref is declared as a reference to Figure, which means that it can be used to

refer to an object of any class derived from Figure. As explained, it is through superclass

reference variables that overridden methods are resolved at run time.

8. Using final with Inheritance

The keyword final has two uses. This use was described in the preceding chapter. The uses of final

apply to inheritance. Both are examined here.

8.1 Using final to Prevent Overriding

While method overriding is one of Java’s most powerful features, there will be times when

you will want to prevent it from occurring. To disallow a method from being overridden,

specify final as a modifier at the start of its declaration. Methods declared as final cannot

be overridden. The following fragment illustrates final:

class A {

final void meth() {

System.out.println("This is a final method.");

}

}

class B extends A {

void meth() { // ERROR! Can't override.

System.out.println("Illegal!");

}

}

 Because meth() is declared as final, it cannot be overridden in B. If you

attempt to do so, a compile-time error will result.

 Methods declared as final can sometimes provide a performance enhancement:

The compiler is free to inline calls to them because it “knows” they will not be

overridden by a subclass.

 When a small final method is called, often the Java compiler can copy the

bytecode for the subroutine directly inline with the compiled code of the calling

method, thus eliminating the costly overhead associated with a method call.

8.2 Using final to Prevent Inheritance

Sometimes you will want to prevent a class from being inherited. To do this, precede the class declaration

with final. Declaring a class as final implicitly declares all of its methods as final, too. As you might expect, it

is illegal to declare a class as both abstract and final since an abstract class is incomplete by itself and relies

upon its subclasses to provide complete implementations.

Here is an example of a final class:

final class A {

//...

}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A

//...

}

9. Local Variable Type Inference and Inheritance

 Local variable type inference to the Java language, which is supported by the context-sensitive

keyword var. It is important to have a clear understanding of how type inference works within an

inheritance hierarchy. Recall that a superclass reference can refer to a derived class object, and this

feature is part of Java’s support for polymorphism.

 However, it is critical to remember that, when using local variable type inference, the inferred type

of a variable is based on the declared type of its initializer.

 Therefore, if the initializer is of the superclass type, that will be the inferred type of the variable.

 It does not matter if the actual object being referred to by the initializer is an instance of a derived

class. For example, consider this program:

// When working with inheritance, the inferred type is the declared

// type of the initializer, which may not be the most derived type of

// the object being referred to by the initializer.

class MyClass {

// ...

}

class FirstDerivedClass extends MyClass {

int x;

// ...

}

Pa
rt

 I

class SecondDerivedClass extends FirstDerivedClass {

int y;

// ...

}

class TypeInferenceAndInheritance {

// Return some type of MyClass object.

static MyClass getObj(int which) {

switch(which) {

case 0: return new MyClass();

case 1: return new FirstDerivedClass();

default: return new SecondDerivedClass();

}

}

public static void main(String[] args) {

// Even though getObj() returns different types of

// objects within the MyClass inheritance hierarchy,

// its declared return type is MyClass. As a result,

// in all three cases shown here, the type of the

// variables is inferred to be MyClass, even though

// different derived types of objects are obtained.

// Here, getObj() returns a MyClass object.

 var mc = getObj(0);

// In this case, a FirstDerivedClass object is returned.

 var mc2 = getObj(1);

// Here, a SecondDerivedClass object is returned.

var mc3 = getObj(2);

// Because the types of both mc2 and mc3 are inferred

// as MyClass (because the return type of getObj() is

// MyClass), neither mc2 nor mc3 can access the fields

// declared by FirstDerivedClass or SecondDerivedClass.

// mc2.x = 10; // Wrong! MyClass does not have an x field.

// mc3.y = 10; // Wrong! MyClass does not have a y field.

}

}

10. The Object Class

 There is one special class, Object, defined by Java. All other classes are subclasses of Object.

 That is, Object is a superclass of all other classes. This means that a reference variable of type

Object can refer to an object of any other class.

 Also, since arrays are implemented as classes, a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in every object.

Method Purpose

Object clone() Creates a new object that is the same as the object being
cloned.

boolean equals(Object object) Determines whether one object is equal to another.

void finalize() Called before an unused object is recycled. (Deprecated
by JDK 9.)

Class<?> getClass() Obtains the class of an object at run time.

int hashCode() Returns the hash code associated with the invoking
object.

void notify() Resumes execution of a thread waiting on the invoking
object.

void notifyAll() Resumes execution of all threads waiting on the invoking
object.

String toString() Returns a string that describes the object.

void wait()

void wait(long milliseconds) void

wait(long milliseconds,

int nanoseconds)

Waits on another thread of execution.

 The methods getClass(), notify(), notifyAll(), and wait() are declared as final.

 equals() and toString(). The equals() method compares two objects.

 It returns true if the objects are equal, and false otherwise.

 The precise definition of equality can vary, depending on the type of objects being compared.

 The toString() method returns a string that contains a description of the object on which it is

called.

 Also, this method is automatically called when an object is output using println().

 Many classes override this method. Doing so allows them to tailor a description specifically for

the types of objects that they create.

Chapter -2
Interfaces

o Using the keyword interface, you can fully abstract a class’ interface from its

implementation. That is, using interface, you can specify what a class must do, but not

how it does it.

o Interfaces are syntactically similar to classes, but they lack instance variables, and, as

a general rule, their methods are declared without any body.

o In practice, this means that you can define interfaces that don’t make assumptions

about how they are implemented.

o Once it is defined, any number of classes can implement an interface. Also, one class

can implement any number of interfaces.

o To implement an interface, a class must provide the complete set of methods required

by the interface.

o However, each class is free to determine the details of its own implementation. By

providing the interface keyword, Java allows you to fully utilize the “one interface,

multiple methods” aspect of polymorphism.

o Interfaces are designed to support dynamic method resolution at run time

2.1 Defining an Interface
An interface is defined much like a class. This is a simplified general form of an interface:

access interface name {
return-type method-name1(parameter-list);
return-type method-name2(parameter-list);

type final-varname1 = value;
type final-varname2 = value;
//...
return-type method-nameN(parameter-list);
type final-varnameN = value;

}

Here is an example of an interface definition. It declares a simple interface that contains one
method called callback() that takes a single integer parameter.

interface Callback {

void callback(int param);

}

Pa
rt

 I

8.2.1 Implementing Interfaces
 Once an interface has been defined, one or more classes can implement that

interface. To implement an interface, include the implements clause in a class

definition, and then create the methods required by the interface.

 The general form of a class that includes the implements clause looks like this:

class classname [extends superclass] [implements interface [,interface...]] {
// class-body

}

If a class implements more than one interface, the interfaces are separated with a comma. If

a class implements two interfaces that declare the same method, then the same method will

be used by clients of either interface. The methods that implement an interface must be

declared public. Also, the type signature of the implementing method must match exactly

the type signature specified in the interface definition.

Here is a small example class that implements the Callback interface shown earlier:

class Client implements Callback {

// Implement Callback's interface

public void callback(int p) {

System.out.println("callback called with " + p);

}

}

It is both permissible and common for classes that implement interfaces to define

additional members of their own. For example, the following version of Client implements

callback() and adds the method nonIfaceMeth():

class Client implements Callback {

// Implement Callback's interface

public void callback(int p) {

System.out.println("callback called with " + p);

}

void nonIfaceMeth() {

System.out.println("Classes that implement interfaces " +

"may also define other members, too.");

}

}

2.1.2 Nested Interfaces

 An interface can be declared a member of a class or another interface. Such an

interface is called a member interface or a nested interface.

 A nested interface can be declared as public, private, or protected.

 When a nested interface is used outside of its enclosing scope, it must be

qualified by the name of the class or interface of which it is a member.

 Thus, outside of the class or interface in which a nested interface is declared,

its name must be fully qualified.

Here is an example that demonstrates a nested interface:

// A nested interface example.

// This class contains a member interface.

class A {

// this is a nested interface

public interface NestedIF {

boolean isNotNegative(int x);

}

}

// B implements the nested interface.

class B implements A.NestedIF {

public boolean isNotNegative(int x) {

return x < 0 ? false: true;

}

}

class NestedIFDemo {

public static void main(String[] args) {

// use a nested interface reference

A.NestedIF nif = new B();

if(nif.isNotNegative(10))

System.out.println("10 is not negative");

if(nif.isNotNegative(-12))

System.out.println("this won't be displayed");

}

}

2.1.3 Applying Interfaces
 The stack can also be held in an array, a linked list, a binary tree, and so on.

 No matter how the stack is implemented, the interface to the stack remains the same.

 That is, the methods push() and pop() define the interface to the stack independently of the details
of the implementation.

Pa
rt

 I

 Because the interface to a stack is separate from its implementation, it is easy to define a stack
interface, leaving it to each implementation to define the specifics. Let’s look at two examples.

 First, here is the interface that defines an integer stack. Put this in a file called IntStack.java.
 This interface will be used by both stack implementations.

// Define an integer stack interface.

interface IntStack {

void push(int item); // store an item

int pop(); // retrieve an item

}

The following program creates a class called FixedStack that implements a fixed-length
version of an integer stack:

// An implementation of IntStack that uses fixed storage.

class FixedStack implements IntStack {

private int[] stck;

private int tos;

// allocate and initialize stack

FixedStack(int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item) {

if(tos==stck.length-1) // use length member

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class IFTest {

public static void main(String[] args) {

FixedStack mystack1 = new FixedStack(5);

FixedStack mystack2 = new FixedStack(8);

// push some numbers onto the stack

for(int i=0; i<5; i++) mystack1.push(i);

for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<8; i++)

System.out.println(mystack2.pop());

}

}

Following is another implementation of IntStack that creates a dynamic stack by use of the same
interface definition.
In this implementation, each stack is constructed with an initial length.
 If this initial length is exceeded, then the stack is increased in size. Each time more room is needed, the
size of the stack is doubled.

// Implement a "growable" stack.

class DynStack implements IntStack {

private int[] stck;

private int tos;

// allocate and initialize stack

DynStack(int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item) {

// if stack is full, allocate a larger stack

if(tos==stck.length-1) {

int[] temp = new int[stck.length * 2]; // double size

for(int i=0; i<stck.length; i++) temp[i] = stck[i];

stck = temp;

stck[++tos] = item;

}

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class IFTest2 {

public static void main(String[] args) {

DynStack mystack1 = new DynStack(5);

DynStack mystack2 = new DynStack(8);

// these loops cause each stack to grow

Pa
rt

 I

for(int i=0; i<12; i++) mystack1.push(i);

for(int i=0; i<20; i++) mystack2.push(i);

System.out.println("Stack in mystack1:");

for(int i=0; i<12; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in

mystack2:"); for(int i=0; i<20; i++)

System.out.println(mystack2.pop());

}

}

2.2 Default Interface Methods

 A default method lets you define a default implementation for an interface method. In other

words, by use of a default method, it is possible for an interface method to provide a body, rather

than being abstract. During its development, the default method was also referred to as an

extension method

 A primary motivation for the default method was to provide a means by which interfaces could be

expanded without breaking existing code. Recall that there must be implementations for all methods

defined by an interface.

 The default method solves this problem by supplying an implementation that will be used if no

other implementation is explicitly provided. Thus, the addition of a default method will not cause

preexisting code to break.

 Another motivation for the default method was the desire to specify methods in an interface

that are, essentially, optional, depending on how the interface is used.

 One last point: As a general rule, default methods constitute a special-purpose feature.

Interfaces that you create will still be used primarily to specify what and not how. However,

the inclusion of the default method gives you added flexibility.

2.2.1 Default Method Fundamentals

An interface default method is defined similar to the way a method is defined by a class. The

primary difference is that the declaration is preceded by the keyword default.

For example, consider this simple interface:

public interface MyIF {

// This is a "normal" interface method declaration.

// It does NOT define a default implementation.

int getNumber();

// This is a default method. Notice that it provides

// a default implementation.

default String getString() {

return "Default String";

}

}

MyIF declares two methods. The first, getNumber(), is a standard interface method

declaration. It defines no implementation whatsoever. The second method is getString(), and it does

include a default implementation. In this case, it simply returns the string "Default String". Pay

special attention to the way getString() is declared. Its declaration is preceded by the default

modifier. This syntax can be generalized. To define a default method, precede its declaration with

default.

Because getString() includes a default implementation, it is not necessary for an implementing

class to override it. In other words, if an implementing class does not provide its own

implementation, the default is used. For example, the MyIFImp class shown next is perfectly valid:

// Implement MyIF.

class MyIFImp implements MyIF {

// Only getNumber() defined by MyIF needs to be implemented.

// getString() can be allowed to default.

public int getNumber() {

return 100;

}

}

The following code creates an instance of MyIFImp and uses it to call both getNumber() and getString().

// Use the default method.

class DefaultMethodDemo {

public static void main(String[] args) {

MyIFImp obj = new MyIFImp();

// Can call getNumber(), because it is explicitly

// implemented by MyIFImp:

System.out.println(obj.getNumber());

// Can also call getString(), because of default

// implementation:

System.out.println(obj.getString());

}

}

Pa
rt

 I

The output is shown here:

100

Default String

A More Practical Example
 IntStack is widely used and many programs rely on it. Further assume that we now want

to add a method to IntStack that clears the stack, enabling the stack to be re-used.

 Thus, we want to evolve the IntStack interface so that it defines new functionality, but we

don’t want to break any preexisting code. In the past, this would be impossible, but with the

inclusion of default methods, it is now easy to do.

 For example, the IntStack interface can be enhanced like this:

interface IntStack {

void push(int item); // store an item

int pop(); // retrieve an item

// Because clear() has a default, it need not be

// implemented by a preexisting class that uses IntStack.

default void clear() {

System.out.println("clear() not implemented.");

}

}

Here, the default behavior of clear() simply displays a message indicating that it is not implemented.
This is acceptable because no preexisting class that implements IntStack would ever call clear()
because it was not defined by the earlier version of IntStack.
However, clear() can be implemented by a new class that implements IntStack. Furthermore, clear()
needs to be defined by a new implementation only if it is used. Thus, the default method gives you

• a way to gracefully evolve interfaces over time, and

• a way to provide optional functionality without requiring that a class provide a placeholder
implementation when that functionality is not needed.

2.3 Use static Methods in an Interface
Another capability added to interface by JDK 8 is the ability to define one or more static methods. Like
static methods in a class, a static method defined by an interface can be called independently of any object.
Thus, no implementation of the interface is necessary, and no instance of the interface is required, in order
to call a static method. Instead, a static method is called by specifying the interface name, followed by a
period, followed by the method name. Here is the general form:

InterfaceName.staticMethodName

Notice that this is similar to the way that a static method in a class is called.

The following shows an example of a static method in an interface by adding one

to MyIF, shown in the previous section. The static method is getDefaultNumber().
It returns zero.

public interface MyIF {

// This is a "normal" interface method declaration.

// It does NOT define a default implementation.

int getNumber();

// This is a default method. Notice that it provides

// a default implementation.

default String getString() {

return "Default String";

}

// This is a static interface method.

static int getDefaultNumber() {

return 0;

}

}

The getDefaultNumber() method can be called, as shown here:

int defNum = MyIF.getDefaultNumber();

As mentioned, no implementation or instance of MyIF is required to call
getDefaultNumber() because it is static.

One last point: static interface methods are not inherited by either an implementing
class or a subinterface.

2.4 Private Interface Methods

 The key benefit of a private interface method is that it lets two or more default methods use a common

piece of code, thus avoiding code duplication.

 For example, here is another version of the IntStack interface that has two default methods called

popNElements() and skipAndPopNElements().

 The first returns an array that contains the top N elements on the stack.

 The second skips a specified number of elements and then returns an array that contains the next N

elements. Both use a private method called getElements() to obtain an array of the specified number

of elements from the stack.

// Another version of IntStack that has a private interface

// method that is used by two default methods.

interface IntStack {

void push(int item); // store an item

int pop(); // retrieve an item

// A default method that returns an array that contains

// the top n elements on the stack.

default int[] popNElements(int n) {

// Return the requested elements.

return getElements(n);

}

// A default method that returns an array that contains

// the next n elements on the stack after skipping elements.

default int[] skipAndPopNElements(int skip, int n) {

// Skip the specified number of elements.

getElements(skip);

// Return the requested elements.

return getElements(n);

}

// A private method that returns an array containing

// the top n elements on the stack

private int[] getElements(int n) {

int[] elements = new int[n];

for(int i=0; i < n; i++) elements[i] = pop();

return elements;

}

}

Notice that both popNElements() and skipAndPopNElements() use the private

getElements() method to obtain the array to return. This prevents both methods from

having to duplicate the same code sequence. Keep in mind that because getElements() is

private, it cannot be called by code outside IntStack. Thus, its use is limited to the default

methods inside IntStack. Also, because getElements() uses the pop() method to obtain

stack elements, it will automatically call the implementation of pop() provided by the

IntStack implementation. Thus, getElements() will work for any stack class that

implements IntStack.

Pa
rt

 I

