Object Oriented Programming using C++-18EE645 2020-21

Module-2

Functions, Classes and Objects

Table of Contents

DAYS EI\THIEC No- | suB TOPICS Page No.
1 Functions 4-10
2 Function ovetloading, Inline function 11-18
4 Module-02 Friend and vittual functions 36-40
6 Specifying a class ,C++ program with a class, arrays within a 4150
class)
- Memory allocation to objects, array of objects, members, 5159
pointers to members and member functions.

[

Department of EEE, S|BIT

Object Oriented Programming using C++-18EE645 2020-21

Functions in C++ (Function & operator Overloading,Inline functions,Default Arguments in
functions). The ways of supporting function has changed and improved in C++ as compared to
C.Most of these changes are simple and straightforward.However there are a few changes which
require you to adopt a new way of thinking and organizing your program's code.Many of these
requirements were driven by object oriented facilities of C++.As we go along you would realise that
these facilities were invented to make C++ programs safer and more readable than their C

equivalents.Let us know the various issues involved in C++ functions.

Function Prototypes

A function prototype is a declaration that defines both : the arguments passed to the function and the
type of value returned by the function. If we were to call a function fool(
) which receives a float and int as arguments and returns a double value its prototype would look like

this:
double fool(float,int);

The C++ compiler uses the prototype to ensure that the types of the arguments you pass in a function
call are same as those mentioned in the prototype.If there is a mismatch the compiler points out

immediately.This is known as strong type checking,something which C lacks.

Without strong type checking,it is easier to pass illegal values to functions.For example,a non-
prototyped function would allow you to pass anint to a pointer variable,or a float to a long int. The
C++ compiler would immediately report such types of errors.In C++ prototypes do more than making
sure that actual arguments (those used in calling function) and formal arguments (those used in called
function) match in number,order and type.As we would see later,C++ internally generates names for
functions,including the argument type information.This information is used when several functions

have same names.

Remember that all functions in C++ must be prototyped.This means that every function must have its
argument list declared,and the actual definition of a function must exactly match its prototype in the

number,order and types of parameters.
//K & R style
double fool(a,b)

Department of EEE, S|BIT 4

Object Oriented Programming using C++-18EE645 2020-21

int a; floatb;

//some code

/ /prototype-like style

double fool(int a,float b)

//some code

Function Overloading

Another significant addition made to the capabilities of functions in C++ is that of function overloading With this
facility you can have multiple functions with the same name,unlike C,whete all the functions in a program must

have unique names.

In C every function must have a unique name.This becomes annoying.For example,in C there are several functions
that return the absolute value of a numeric argument.Since a unique name is required,there is a separate function

for each numeric data type. Thus there are three different functions that return the absolute value of an argument:

int abs(int 1);

long labs(long I);

double fabs(double d);

All these functions do the same thing,so it seems unnecessary to have three different function names.C++

overcomes this situation by allowing the programmer to create three different functions with the same name.This

is called as Function Overloading. Now we can write the function abs as:

int abs(int ii);
long abs(long 1I);
double abs(double dd);

Department of EEE, S|BIT 5

Object Oriented Programming using C++-18EE645 2020-21

How does the C++ compiler know which of the abs()s should be called when a call is made? It
decides from the type of the argument being passed during function call.For example,if an inf is
being passed the integer version of abs(') gets called,if a double is being passed then the double
version ofabs() gets called and so on.That's quite logical,you would agree.

What if we make a call like,

ch=abs('A")

We have not declared abs(’) function to handle a char.Hence the C++ compiler would report an
error.If we want that this call should result into a call to the int version of abs(),we must make use
of typecasting during the call,as shown below:

ch=abs((int);A");

Default Arguments in Functions

In C if a function is defined to receive 2 arguments,whenever we call this function we have to pass 2
values to this function.If we pass one value then some garbage value is assumed for the last
argument.As against this,functions in C++ have an ability to define values for arguments that are not
passed when the function call is made.

Let us understand this with an example:
void box(int st=1,int sc=1,int er=24,int ec=80);

void main()

{
cleser();
box(10,20,22,70); //Passing all 4 arguments
box(10,20,15); //Passing 3 arguments
box(5,10); //Passing 2 arguments
box(); //Passing no arguments
}

When we call the function box() with 4 arguments the box is drawn with the arguments
passed.However when we call it with 3 arguments the default value mentioned in the prototype

of box(') is considered for the last argument.Likewise when we call the function with 2 arguments the
default values for the last 2 arguments are considered.Finally,when we call it with no arguments, a
box is drawn with all the default values mentioned in the prototype. Thus the default arguments are

used if the calling function doesn't supply them when the function is called.

Department of EEE, S|BIT 6

Object Oriented Programming using C++-18EE645 2020-21

Note: If one argument is missing when the function is called, it is assumed to be the last
argument. Thus,the missing arguments must be the trailing ones./you can leave out the last 3

arguments,but you cannot leave out the last but one and put in the last one.

Default arguments are useful in 2 cases:

a) While making a function call if you don't want to take the trouble of writing arguments which
almost always has the same value.
b) They are also useful in such cases where,after having written a program we decide to increase
the capabilities of a function by adding another argument.Using default arguments means that the
existing function calls can continue to use old number of arguments,while new function calls can use
more.

Using functions we can structure our programs in a more modular way, accessing all the potential

that structured programming can offer to us in C++.

A function is a group of statements that is executed when it is called from some point of the program.

The following is its format:
type name (parameterl, parameter2,) { statements }
where:

e type is the data type specifier of the data returned by the function.

e name is the identifier by which it will be possible to call the function.

e parameters (as many as needed): Each parameter consists of a data type specifier followed by
an identifier, like any regular variable declaration (for example: int X) and which acts within
the function as a regular local variable. They allow to pass arguments to the function when it
is called. The different parameters are separated by commas.

e statements is the function's body. It is a block of statements surrounded by braces { }.

Here you have the first function example:

// function example

#include <iostream>

Department of EEE, S|BIT 7

Object Oriented Programming using C++-18EE645

using namespace std;

int addition (int a, int b)
{

int

r=atb;

return (1),

}

int main ()
{
int z;
z = addition (5,3);
cout << "The result is " << z;
return 0;

}

Ans: The result is 8

In order to examine this code, first of all remember something said at the beginning of this tutorial: a

C++ program always begins its execution by the main function. So we will begin there.

We can see how the main function begins by declaring the variable z of type int. Right after that, we
see a call to a function called addition. Paying attention we will be able to see the similarity between

the structure of the call to the function and the declaration of the function itself some code lines

above:

int addition (int a, int h)

I

z = addition (5 , 3

The parameters and arguments have a clear correspondence. Within the main function we called

Department of EEE, S|BIT

)

2020-21

Object Oriented Programming using C++-18EE645 2020-21

to additionpassing two values: 5 and 3, that correspond to the int a and int b parameters declared for

function addition.
At the point at which the function is called from within main, the control is lost by main and passed
to functionaddition. The value of both arguments passed in the call (5 and 3) are copied to the local

variables int a and int b within the function.

Function addition declares another local variable (int r), and by means of the expression r=a+b, it

assigns to rthe result of a plus b. Because the actual parameters passed
for a and b are 5 and 3 respectively, the result is 8.
The following line of code:

return (1),

finalizes function addition, and returns the control back to the function that called it in the first place
(in this case,main). At this moment the program follows its regular course from the same point at
which it was interrupted by the call to addition. But additionally, because the return statement in
function addition specified a value: the content of variable r (return (r);), which at that moment had a

value of8. This value becomes the value of evaluating the function call.

int addition (int a, int h)

lﬂ

£ = addition { 5 , 3);

So being the value returned by a function the value given to the function call itself when it is
evaluated, the variable z will be set to the value returned by addition (5, 3), that is 8. To explain it
another way, you can imagine that the call to a function (addition (5,3)) is literally replaced by the

value it returns (8).

The following line of code in main is:

cout << "The result is " << z;

That, as you may already expect, produces the printing of the result on the screen.

Department of EEE, S|BIT 9

Object Oriented Programming using C++-18EE645 2020-21

The scope of variables declared within a function or any other inner block is only their own function
or their own block and cannot be used outside of them. For example, in the previous example it
would have been impossible to use the variables a, b or r directly in function main since they were
variables local to function addition. Also, it would have been impossible to use the variable z directly

within function addition, since this was a variable local to the function main.

#include <iostream-
using namespace std;

int Integex;

char aCharacter;

char string [20];
unsigned int Humbexr0fSons;

lobal variahles

int main ()

i
unsigned shoxt Age;
float AHumber, AnothexrOne; Local variables

cout << "Enter your age:";

cin => Age; Insiructions

Therefore, the scope of local variables is limited to the same block level in which they are declared.
Nevertheless, we also have the possibility to declare global variables; These are visible from any
point of the code, inside and outside all functions. In order to declare global variables you simply
have to declare the variable outside any function or block; that means, directly in the body of the

program.

// function example
#Hinclude <iostream>

using namespace std;

int subtraction (int a, int b)

{
int

r=a-b;

Department of EEE, S|BIT 10

| Object Oriented Programming using C++-18EFE645 2020-21

return (1),

}

int main ()
{
int x=5, y=3, z;
z = subtraction (7,2);
cout << "The first result is " <<z <<'\n';
cout << "The second result is " << subtraction (7,2) << '\n';
cout << "The third result is " << subtraction (x,y) << '\n';
z= 4 + subtraction (x,y);
cout << "The fourth result is " <<z <<'\n';

return 0;

Ans: The first result is 5
The second result is 5
The third result is 2

The fourth result is 6

In this case we have created a function called subtraction. The only thing that this function does is to

subtract both passed parameters and to return the result.

Nevertheless, if we examine function main we will see that we have made several calls to
function subtraction. We have used some different calling methods so that you see other ways or

moments when a function can be called.

In order to fully understand these examples you must consider once again that a call to a function
could be replaced by the value that the function call itself is going to return. For example, the first
case (that you should already know because it is the same pattern that we have used in previous
examples):

z = subtraction (7,2);

Department of EEE, S|BIT 11

Object Oriented Programming using C++-18EE645 2020-21

cout << "The first result is " << z;

If we replace the function call by the value it returns (i.e.,5), we would have:
z=175;

cout << "The first result is "' << z;

As well as

cout << "The second result is " << subtraction (7,2);

has the same result as the previous call, but in this case we made the call to subtraction directly as an
insertion parameter for cout. Simply consider that the result is the same as if we had written:

cout << "The second result is " <<'5;

since 5 is the value returned by subtraction (7,2).

In the case of:

cout << "The third result is " << subtraction (x,y)

The only new thing that we introduced is that the parameters of subtraction are variables instead of
constants. That is perfectly valid. In this case the values passed to function subtraction are the values

of x and y, that are Sand 3 respectively, giving 2 as result.

The fourth case is more of the same. Simply note that instead of:

z =4 + subtraction (x,y);

we could have written:

z = subtraction (x,y) + 4;

with exactly the same result. I have switched places so you can see that the semicolon sign (;) goes at
the end of the whole statement. It does not necessarily have to go right after the function call. The

explanation might be once again that you imagine that a function can be replaced by its returned

value:
z=4+2;
z=2+4;

Department of EEE, S|BIT 12

Object Oriented Programming using C++-18EE645 2020-21

Functions with no type. The use of void.

If you remember the syntax of a function declaration:

type name (argumentl, argument? ...) statement

you will see that the declaration begins with a type, that is the type of the function itself (i.e., the type
of the datum that will be returned by the function with the return statement). But what if we want to

return no value?

Imagine that we want to make a function just to show a message on the screen. We do not need it to
return any value. In this case we should use the void type specifier for the function. This is a special

specifier that indicates absence of type.

// void function example
#include <iostream>

using namespace std;

void printmessage ()

{

cout << "I'm a function!";

}

int main ()

{

printmessage ();

return 0;

}

Ans: I'm a function!
void can also be used in the function's parameter list to explicitly specify that we want the function to

take no actual parameters when it is called. For example, function printmessage could have been

Department of EEE, S|BIT 13

Object Oriented Programming using C++-18EE645 2020-21

declared as:
void printmessage (void)
{

cout << "I'm a function!";

}

Although it is optional to specify void in the parameter list. In C++, a parameter list can simply be

left blank if we want a function with no parameters.

What you must always remember is that the format for calling a function includes specifying its
name and enclosing its parameters between parentheses. The non-existence of parameters does not
exempt us from the obligation to write the parentheses. For that reason the call to printmessage is:

printmessage ();

The parentheses clearly indicate that this is a call to a function and not the name of a variable or some
other C++ statement. @ The following call would have been incorrect:

printmessage;

Arguments passed by value and by reference.

Until now, in all the functions we have seen, the arguments passed to the functions have been
passed by value. This means that when calling a function with parameters, what we have passed to
the function were copies of their values but never the variables themselves. For example, suppose
that we called our first function additionusing the following code:
int x=5, y=3, z;

z = addition (x,y);

What we did in this case was to call to function addition passing the values of x andy,

1.e. 5 and 3 respectively, but not the variables x and y themselves.

Department of EEE, S|BIT 14

Object Oriented Programming using C++-18EE645

int addition (int a, int h)

o

z = addition {(5 , = R

This way, when the function addition

variables a and b become 5 and 3 respectively, but

2020-21

is called, the wvalue of its local

any modification to either a or b within the

function addition will not have any effect in the values ofx and youtside it, because

variables x and y were not themselves passed to the function, but only copies of their values at the

moment the function was called.

But there might be some cases where you need to manipulate from inside a function the value of an

external variable. For that purpose we can use arguments passed by reference, as in the function

duplicate of the

// passing parameters by reference
#include <iostream>

using namespace std;

void duplicate (int& a, int& b, int& c)

int main ()

int x=1, y=3, z=7,;
duplicate (x,y, z);
cout <<'"x="<<x <<" y="' <<y <<" z=" << z;

return 0;

}

Department of EEE, S|BIT

following example:

Object Oriented Programming using C++-18EE645 2020-21

Ans: x=2, y=6, z=14

The first thing that should call your attention is that in the declaration of duplicate the type of each
parameter was followed by an ampersand sign (&). This ampersand is what specifies that their

corresponding arguments are to be passed by referenceinstead of by value.

When a variable is passed by reference we are not passing a copy of its value, but we are somehow
passing the variable itself to the function and any modification that we do to the local variables will

have an effect in their counterpart variables passed as arguments in the call to the function.

void duplicate (int& a.int& b, int& o)

./
duplicate H ¥ oo Z: | e
To explain it in another way, we associate a, b and ¢ with the arguments passed on the function call

(x, y and z) and any change that we do on a within the function will affect the value of x outside it.

Any change that we do onbwill affecty, and the same withcandz.

That is why our program's output, that shows the values stored in x, y and z after the call to duplicate,

shows the values of all the three variables of main doubled.

If when declaring the following function:

void duplicate (int& a, int& b, int& c)

we had declared it this way:

void duplicate (int a, int b, int c)

i.e., without the ampersand signs (&), we would have not passed the variables by reference, but a
copy of their values instead, and therefore, the output on screen of our program would have been the

values of x, y and zwithout having been modified.

Passing by reference is also an effective way to allow a function to return more than one value. For

example, here is a function that returns the previous and next numbers of the first parameter passed.

// more than one returning value

Department of EEE, S|BIT 16

Object Oriented Programming using C++-18EE645 2020-21

#include <iostream>

using namespace std;

void prevnext (int X, int& prev, int& next)
{
prev =x-1;
next = x+1;
h
int main ()
{
int x=100, y, z;
prevnext (X, y, z);
cout << "Previous=" <<y <<", Next=" << z;

return 0;

Ans: Previous=99, Next=101

Default values in parameters.

When declaring a function we can specify a default value for each of the last parameters. This value
will be used if the corresponding argument is left blank when calling to the function. To do that, we
simply have to use the assignment operator and a value for the arguments in the function declaration.
If a value for that parameter is not passed when the function is called, the default value is used, but if

a value is specified this default value is ignored and the passed value is used instead. For example:

// default values 1in functions
#include <iostream>

using namespace std;

int divide (int a, int b=2)

{
int

r=a/b;

Department of EEE, S|BIT 17

| Object Oriented Programming using C++-18EFE645 2020-21

return (1),

}

int main ()

{
cout << divide (12);
cout << endl;
cout << divide (20,4);

return 0;

Ans: 6

As we can see in the body of the program there are two calls to function divide. In the first one:

divide (12)

we have only specified one argument, but the function divide allows up to two. So the
function divide has assumed that the second parameter is 2 since that is what we have specified to
happen if this parameter was not passed (notice the function declaration, which finishes with int b=2,

not justint b). Therefore the result of this function call 1s6 (12/2).

In the second call:

divide (20,4)

there are two parameters, so the default value for b (int b=2) is ignored and b takes the value passed

as argument, that is 4, making the result returned equal to 5 (20/4).

Overloaded functions.

In C++ two different functions can have the same name if their parameter types or number are
different. That means that you can give the same name to more than one function if they have either a

different number of parameters or different types in their parameters. For example:

// overloaded function

Department of EEE, S|BIT 18

Object Oriented Programming using C++-18EE645

#include <iostream>

using namespace std;

int operate (int a, int b)
{

return (a*b);

}

float operate (float a, float b)
{

return (a/b);

}

int main ()

{
int Xx=5,y=2;

float n=5.0,m=2.0;
cout << operate (X,y);
cout << "\n";
cout << operate (n,m);
cout << "\n";

return 0;

Ans: 10
2.5

In this case we have defined two functions with the same name, operate, but one of them accepts two
parameters of type int and the other one accepts them of type float. The compiler knows which one to
call in each case by examining the types passed as arguments when the function is called. If it is
called with two ints as its arguments it calls to the function that has two int parameters in its

prototype and if it is called with two floats it will call to the one which has two float parameters in its

Department of EEE, S|BIT

2020-21

Object Oriented Programming using C++-18EE645 2020-21

prototype.

In the first call to operate the two arguments passed are of type int, therefore, the function with the
first prototype is called; This function returns the result of multiplying both parameters. While the
second call passes two arguments of type float, so the function with the second prototype is called.
This one has a different behavior: it divides one parameter by the other. So the behavior of a call

to operate depends on the type of the arguments passed because the function has been overloaded.

Notice that a function cannot be overloaded only by its return type. At least one of its parameters

must have a different type.

inline functions.

The inline specifier indicates the compiler that inline substitution is preferred to the usual function
call mechanism for a specific function. This does not change the behavior of a function itself, but is
used to suggest to the compiler that the code generated by the function body is inserted at each point

the function is called, instead of being inserted only once and perform a regular call to it, which

generally involves some additional overhead in running time.
The format for its declaration is:
inline type name (arguments) { instructions }

and the call is just like the call to any other function. You do not have to include the inline keyword

when calling the function, only in its declaration.

Most compilers already optimize code to generate inline functions when it is more convenient. This

specifier only indicates the compiler that inline 1is preferred for this function.

Department of EEE, S|BIT 20

Object Oriented Programming using C++-18EE645 2020-21

Recursivity.

Recursivity is the property that functions have to be called by themselves. It is useful for many tasks,

like sorting or calculate the factorial of numbers. For example, to obtain the factorial of a number (n!)

the mathematical

n!=n*(n-1) * (n-2) * (n-3) ... * 1

more concretely, 5!

S51=5%4*3*%2%1=120

and a recursive function

// factorial calculator
#include <iostream>

using namespace std;

long factorial (long a)

{
if(a>1)
return (a * factorial (a-1));
else

return (1),

int main ()
{
long number;
cout << "Please type a number: ";

cin >> number;

formula would be:

(factorial of 5) would be:

to calculate this n C++ could be:

cout << number << "! =" << factorial (number);

return 0;

Ans: Please type a number: 9
9! = 362880

Department of EEE, S|BIT

Object Oriented Programming using C++-18EE645 2020-21

Notice how in function factorial we included a call to itself, but only if the argument passed was
greater than 1, since otherwise the function would perform an infinite recursive loop in which once it
arrived to 0 it would continue multiplying by all the negative numbers (probably provoking a stack

overflow error on runtime).
This function has a limitation because of the data type we used in its design (long) for more

simplicity. The results given will not be valid for values much greater than 10! or 15!, depending on

the system you compile it.

Declaring functions.

Until now, we have defined all of the functions before the first appearance of calls to them in the
source code. These calls were generally in function main which we have always left at the end of the
source code. If you try to repeat some of the examples of functions described so far, but placing the
function main before any of the other functions that were called from within it, you will most likely
obtain compiling errors. The reason is that to be able to call a function it must have been declared in
some earlier point of the code, like we have done in all our examples.
But there is an alternative way to avoid writing the whole code of a function before it can be used in
main or in some other function. This can be achieved by declaring just a prototype of the function
before it is used, instead of the entire definition. This declaration is shorter than the entire definition,

but significant enough for the compiler to determine its return type and the types of its parameters.

Its form 1S:

type name (argument_typel, argument_type2, s

It is identical to a function definition, except that it does not include the body of the function itself

(i.e., the function statements that in normal definitions are enclosed in braces { }) and instead of that

we end the prototype declaration with a mandatory semicolon ().

The parameter enumeration does not need to include the identifiers, but only the type specifiers. The

Department of EEE, S|BIT 22

Object Oriented Programming using C++-18EE645 2020-21

inclusion of a name for each parameter as in the function definition is optional in the prototype
declaration. For example, we can declare a function called protofunction with two int parameters
with any of the following declarations:
int protofunction (int first, int second);

int protofunction (int, int);

Anyway, including a name for each variable makes the prototype more legible.

// declaring functions prototypes
#include <iostream>

using namespace std;

void odd (int a);,

void even (int a);

int main ()
{
int 1;
do {
cout << "Type a number (0 to exit): ";
cin >> i
odd (i);
} while (1!=0);
return 0;

}

void odd (int a)

{
if ((2%2)!=0) cout << "Number is odd.\n";

else even (a);

}

void even (int a)

N
[ON)

Department of EEE, S|BIT

| Object Oriented Programming using C++-18EFE645 2020-21

{

if ((a%2)==0) cout << "Number is even.\n";
else odd (a);
}

Ans: Type a number (0 to exit): 9
Number is odd.

Type a number (0 to exit): 6
Number is even.

Type a number (0 to exit): 1030
Number is even.

Type a number (0 to exit): O

Number is even.

This example is indeed not an example of efficiency. I am sure that at this point you can already
make a program with the same result, but using only half of the code lines that have been used in this
example. Anyway this example illustrates how prototyping works. Moreover, in this concrete
example the prototyping of at least one of the two functions is necessary in order to compile the code

without errors.

The first things that we see are the declaration of functions odd and even:
void odd (int a);

void even (int a);

This allows these functions to be used before they are defined, for example, in main, which now is
located where some people find it to be a more logical place for the start of a program: the beginning

of the source code.

Anyway, the reason why this program needs at least one of the functions to be declared before it is
defined is because in odd there is a call to even and in even there is a call to odd. If none of the two
functions had been previously declared, a compilation error would happen, since either odd would
not be visible from even (because it has still not been declared), or even would not be visible

from odd (for the same reason).

Department of EEE, S|BIT 24

Object Oriented Programming using C++-18EE645 2020-21

Having the prototype of all functions together in the same place within the source code is found
practical by some programmers, and this can be easily achieved by declaring all functions prototypes

at the beginning of a program.

A function is a group of statements that together perform a task. Every C++ program has at least one

function which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among different

functions is up to you, but logically the division usually is so each function performs a specific task.

A function declaration tells the compiler about a function's name, return type, and parameters. A

function definition provides the actual body of the function.

The C++ standard library provides numerous built-in functions that your program can call. For
example, function strcat() to concatenate two strings, function memcpy() to copy one memory

location to another location and many more functions.

A function is knows as with various names like a method or a sub-routine or a procedure etc.

Defining a Function:

The general form of a C++ function definition is as follows:

return_type function name(parameter list)

{
body of the function

A C++ function definition consists of a function header and a function body. Here are all the parts of

a function:

e Return Type: A function may return a value. The return_type is the data type of the value
the function returns. Some functions perform the desired operations without returning a value.

In this case, the return_type is the keyword void.

Department of EEE, S|BIT

[\S)
[}

Object Oriented Programming using C++-18EE645 2020-21

e Function Name: This is the actual name of the function. The function name and the
parameter list together constitute the function signature.

e Parameters: A parameter is like a placeholder. When a function is invoked, you pass a value
to the parameter. This value is referred to as actual parameter or argument. The parameter list
refers to the type, order, and number of the parameters of a function. Parameters are optional;
that is, a function may contain no parameters.

e Function Body: The function body contains a collection of statements that define what the

function does.

Example:

Following is the source code for a function called max(). This function takes two parameters numl

and num?2 and returns the maximum between the two:

// function returning the max between two numbers

int max(int num1, int num2)

{

// local variable declaration

int result;

if (num1 > num?2)
result = numl;

else

result = num2;

return result;

Department of EEE, S|BIT 26

Object Oriented Programming using C++-18EE645 2020-21

Function Declarations:

A function declaration tells the compiler about a function name and how to call the function. The

actual body of the function can be defined separately.

A function declaration has the following parts:

return_type function name(parameter list);

For the above defined function max(), following is the function declaration:

int max(int numl, int num?2);

Parameter names are not importan in function declaration only their type is required, so following is

also valid declaration: int max(int, int);

Function declaration is required when you define a function in one source file and you call that
function in another file. In such case you should declare the function at the top of the file calling the

function.

Calling a Function:

While creating a C++ function, you give a definition of what the function has to do. To use a

function, you will have to call or invoke that function.

When a program calls a function, program control is transferred to the called function. A called
function performs defined task and when its return statement is executed or when its function-ending

closing brace is reached, it returns program control back to the main program.

To call a function you simply need to pass the required parameters along with function name and if

function returns a value then you can store returned value. For example:

#include <iostream>

using namespace std,;

Department of EEE, S|BIT 27

Object Oriented Programming using C++-18EE645 2020-21

// function declaration

int max(int numl, int num?2);

int main ()

{

// local variable declaration:
int a = 100;
int b =200;

int ret;

// calling a function to get max value.

ret = max(a, b);

cout << "Max value is : " <<ret << end]l;

return 0;

// function returning the max between two numbers
int max(int num1, int num?2)
{

// local variable declaration

int result;

if (num1 > num?2)
result = num1;

else

result = num2;

return result;

Department of EEE, S|BIT 28

| Object Oriented Programming using C++-18EFE645 2020-21

I kept max() function along with main() function and complied the source code. While running final

executable, it would produce following result: Max value is : 200

Function Arguments:

If a function is to use arguments, it must declare variables that accept the values of the arguments.

These variables are called the formal parameters of the function.

The formal parameters behave like other local variables inside the function and are created upon

entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a function:

Call Type Description
Call by value This method copies the actual value of an

argument into the formal parameter of the
function. In this case, changes made to the
parameter inside the function have no effect on

the argument.

Call by reference This method copies the address of an argument

into the formal parameter. Inside the function, the
address 1s used to access the actual argument used
in the call. This means that changes made to the

parameter affect the argument.

By default, C++ uses call by value to pass arguments. In general, this means that code within a
function cannot alter the arguments used to call the function and above mentioned example while

calling max() function used the same method.

Department of EEE, S|BIT 29

Object Oriented Programming using C++-18EE645 2020-21

Default Values for Parameters:

When you define a function you can specify a default value for for each of the last parameters. This

value will be used if the corresponding argument is left blank when calling to the function.

This is done by using the assignment operator and assigning values for the arguments in the function
definition. If a value for that parameter is not passed when the function is called, the default given
value is used, but if a value is specified this default value is ignored and the passed value is used

instead. Consider the following example:

#include <iostream>

using namespace std;

int sum(int a, int b=20)

{

int result;

result=a +b;

return (result);

}

int main ()

{
// local variable declaration:
inta=100;
int b=200;

int result;

// calling a function to add the values.
result = sum(a, b);

cout << "Total value is :" << result << endl;

Department of EEE, S|BIT 30

Object Oriented Programming using C++-18EE645 2020-21

// calling a function again as follows.
result = sum(a);

cout << "Total value is :" << result << end],;

return O;

When the above code is compiled and executed, it produces following result:

Total value is :300

Total value is :120

C++ function call by reference

The call by reference method of passing arguments to a function copies the address of an argument
into the formal parameter. Inside the function, the address is used to access the actual argument used

in the call. This means that changes made to the parameter affect the passed argument.

To pass the value by reference, argument pointers are passed to the functions just like any other
value. So accordingly you need to declare the function parameters as pointer types as in the following

function swap(), which exchanges the values of the two integer variables pointed to by its arguments.

// function definition to swap the values.
void swap(int *x, int *y)
{
int temp;
temp = *x; /* save the value at address x */
*x = *y; /* put y into x */

y = temp; / put x into y */

return;

Department of EEE, S|BIT 31

| Object Oriented Programming using C++-18EFE645 2020-21

To check the more detail about C++ pointers, kindly check C++ Pointers chapter.
For now, let us call the function swap() by passing values by reference as in the following example:

#include <iostream>

using namespace std;

// function declaration

void swap(int *x, int *y);

int main ()

{
// local variable declaration:
inta=100;
int b=200;

cout << "Before swap, value of a :" << a <<endI;

cout << "Before swap, value of b :" << b << end];

/* calling a function to swap the values.

* &a indicates pointer to a ie. address of variable a and
* &b indicates pointer to b ie. address of variable b.
*/

swap(&a, &b);

cout << "After swap, value of a :" << a <<endl;

cout << "After swap, value of b :" << b << end];

return O;

Department of EEE, S|BIT 32

| Object Oriented Programming using C++-18EFE645 2020-21

When the above code is put together in a file, compiled and executed, it produces following result:

Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :200

After swap, value of b :100

C++ function overloading programs

Function overloading in C++: C++ program for function overloading. Function overloading means
two or more functions can have the same name but either the number of arguments or the data type of
arguments has to be different, also note that return value has no role because function will return a
value when it is called and at compile time we will not be able to determine which function to call. In
the first example in our code we make two functions one for adding two integers and other for adding
two floats but they have same name and in the second program we make two functions with identical
names but pass them different number of arguments. Function overloading is also known as compile

time polymorphism.

C++ programming code

#include <iostream>
using namespace std;
/* Function arguments are of different data type */

long add(long, long);
float add(float, float);

int main()

{

Department of EEE, S|BIT 33

Object Oriented Programming using C++-18EE645

long a, b, x;

float c, d, y;

cout << "Enter two integers\n";

cin >>a >>b;

x = add(a, b);

cout << "Sum of integers: " << x << end];

cout << "Enter two floating point numbers\n";

cin >> ¢ >>d;

y = add(c, d);

cout << "Sum of floats: " <<y << end],

return 0;

long add(long x, long y)
{
long sum;

sum =X ty;

return sum;

float add(float x, float y)
{

Department of EEE, S|BIT

2020-21

34

Object Oriented Programming using C++-18EE645 2020-21

float sum;

sum =X ty;

return sum;

C++ programming code for function overloading

#include <iostream>

using namespace std,;

/* Number of arguments are different */

void display(char []); // print the string passed as argument
void display(char [], char []);

int main()

{

char first[] = "C programming";

char second[] = "C++ programming";

display(first);
display(first, second);

return 0;

void display(char s[])
{

cout << s << endl;

Department of EEE, S|BIT 35

| Object Oriented Programming using C++-18EFE645 2020-21

void display(char s[], char t[])

{

cout << s << endl <<t << endl;
}
Output of program:
C programming
C programming

C++ programming

Virtual functions (C++ only)

By default, C++ matches a function call with the correct function definition at compile time. This is
called static binding. You can specify that the compiler match a function call with the correct
function definition at run time; this is called dynamic binding. You declare a function with the

keyword virtual if you want the compiler to use dynamic binding for that specific function.

The following examples demonstrate the differences between static and dynamic binding. The first

example demonstrates static binding:

The following is the output of the above example:Class A

When function g () is called, function a: : £ () is called, although the argument refers to an object of
type B. At compile time, the compiler knows only that the argument of function g () will be a
reference to an object derived from 2; it cannot determine whether the argument will be a reference to
an object of type 2 or type B. However, this can be determined at run time. The following example is

the same as the previous example, except that A: : £ () is declared with thevirtual keyword:

#include <iostream>

using namespace std,;

Department of EEE, S|BIT 36

Object Oriented Programming using C++-18EE645 2020-21

struct A {

virtual void () { cout << "Class A" <<end]l; }

¥

struct B: A {
void () { cout << "Class B" << endl; }

¥

void g(A& arg) {
arg.f();
}

int main() {
B x;
g(x);

The following is the output of the above example:

Class B

The virtual keyword indicates to the compiler that it should choose the appropriate definition

of £ () not by the type of reference, but by the type of object that the reference refers to.

Therefore, a virtual function is a member function you may redefine for other derived classes, and
can ensure that the compiler will call the redefined virtual function for an object of the corresponding

derived class, even if you call that function with a pointer or reference to a base class of the object.

A class that declares or inherits a virtual function is called a polymorphic class.

You redefine a virtual member function, like any member function, in any derived class. Suppose

you declare a virtual function named f in a class 2, and you derive directly or indirectly from a a

Department of EEE, S|BIT 37

Object Oriented Programming using C++-18EE645 2020-21

class named B. If you declare a function named £ in class B with the same name and same parameter
list asa::f, thenB::fis also virtual (regardless whether or not you declare B::f with
the virtual keyword) and it overrides n: : £. However, if the parameter lists of a:: f andB: : f are
different, 2::f and B: : £ are considered different, B::f does not override a::f, and B::fis not
virtual (unless you have declared it with thevirtual keyword). Instead B::f hides n::f. The

following example demonstrates this:

#include <iostream>

using namespace std,;

struct A {

virtual void () { cout <<"Class A" <<endl; }

¥

struct B: A {

void f(int) { cout << "Class B" <<endl; }

3

struct C: B {
void () { cout << "Class C" << endl; }

¥

int main() {
Bb; Cc;
A* pal = &b;
A* pa2 = &c;

/I b.A));
pal->f();
pa2->f();

}

The following is the output of the above example:

Department of EEE, S|BIT 38

Object Oriented Programming using C++-18EE645 2020-21

Class A
Class C

The function B: : £ is not virtual. It hides A::f. Thus the compiler will not allow the function

call b. £ (). The function C: : £ is virtual; it overrides A: : £ even though A: : f is not visible in c.

If you declare a base class destructor as virtual, a derived class destructor will override that base class

destructor, even though destructors are not inherited.

The return type of an overriding virtual function may differ from the return type of the overridden
virtual function. This overriding function would then be called acovariant virtual function. Suppose
that B: : £ overrides the virtual function 2: : £. The return types of A: : f and B: : £ may differ if all the

following conditions are met:

e The function B::f returns a reference or pointer to a class of type T, and A::f returns a pointer
or a reference to an unambiguous direct or indirect base class of T.

e The const or volatile qualification of the pointer or reference returned by B::f has the same or
less const or volatile qualification of the pointer or reference returned by A::f.

e The return type of B::f must be complete at the point of declaration of B::f, or it can be of

type B.

The following example demonstrates this:

#include <iostream>

using namespace std;

struct A { };

class B : private A {

friend class D;

friend class F;

¥

Department of EEE, S|BIT 39

Object Oriented Programming using C++-18EE645 2020-21

Department of EEE, SJBIT

| Object Oriented Programming using C++-18EFE645 2020-21
35

int main() {

D d;
C* cp=&d;
D* dp = &d;

A* ap = cp->1();
B* bp = dp->f();
¥

The following is the output of the above example:

B* D::f()
B* D::f()

The statement A* ap = cp->f() callsD::f() and converts the pointer returned to type a*. The
statement B* bp = dp->f () calls D::f () as well but does not convert the pointer returned; the type
returned isB*. The compiler would not allow the declaration of the virtual
function F: : £ () because E is not a complete class. The compiler would not allow the declaration of
the virtual function G::f () because class Ais not an accessible base class of B (unlike friend

classes D and F, the definition of B does not give access to its members for class G).

A virtual function cannot be global or static because, by definition, a virtual function is a member
function of a base class and relies on a specific object to determine which implementation of the

function is called. You can declare a virtual function to be a friend of another class.

If a function is declared virtual in its base class, you can still access it directly using the scope
resolution (::) operator. In this case, the virtual function call mechanism is suppressed and the
function implementation defined in the base class is used. In addition, if you do not override a virtual
member function in a derived class, a call to that function uses the function implementation defined

in the base class.

Department of EEE, S|BIT 41

Object Oriented Programming using C++-18EE645 2020-21

A virtual function must be one of the following:

e Defined
e Declared pure

e Defined and declared pure

A base class containing one or more pure virtual member functions is called an abstract class.

Operator Ovetloading

Operator Overloading is one of the most fascinating features of C++.It can transform,obscure
program listings into intuitive obvious ones.By overloading operators we can give additional
meaning to operators like +,*,-,<=>= etc. which by default are supposed to work only on standard
data types likeints,floats etc. For example if s¢tr/ and str2 are two character arrays holding strings
"Bombay" and "Nagpur" in them then to store "BombayNagpur" in a third string str3, in C we need

to perform the following operations:

char str1[20] = "Nagpur";
char str2[] = "Bomaby";
char str3]20];
strepy(ste3,strl);

streat(str3,str2);

No doubt this does the desired task but don't you think that the following form would have made

morec Sensc:

str3 = strl + str2;

Such a form would obviously not work with C,since we are attempting to apply the + operator on
non-standard data types (strings) for which addition operation is not defined. That's the place where

C++ scores over C,because it permits the + operator to be overloaded such that it knows how to add

Department of EEE, S|BIT 42

Object Oriented Programming using C++-18EE645 2020-21

two strings.

Inline Functions

One of the important advantages of using functions is that they help us save memory space.As all the
calls to the function cause the same code to be executed;the function body need not be duplicated in

memory.

Imagine a situation where a small function is getting called several times in a program.As you must
be aware,there are certain overheads involved while calling a function.Time has to be spent on
passing values,passing control,returning value and returning control.In such situations to save the
execution time you may instruct the C++ compiler to put the code in the function body directly inside
the code in the calling program.That is, at each place where there is a function call in the source file,
the actual code from the function would be inserted, instead of jump to the function. Such functions

are called inline functions. The in-line nature of the individual copy of the function eliminates the function-

calling overhead of a traditional function. The following program shows inline function at work.

#include<iostream.h>

inline void reporterror(char *str)

{

cout<<endl<<str;

exit(1);

void main()

{

//code to open soutce file
if (fileopeningfailed)

reporterrer("Unable to open source file");

//code to open target file

Department of EEE, S|BIT 43

| Object Oriented Programming using C++-18EFE645 2020-21

if(fileopeningfailed)

reporterror("Unable to open target file");

Function Pointers

A function pointer is a variable that stores the address of a function that can later be called through
that function pointer. This is useful because functions encapsulate behavior. For instance, every time
you need a particular behavior such as drawing a line, instead of writing out a bunch of code, all you
need to do is call the function. But sometimes you would like to choose different behaviors at

different times in essentially the same piece of code.

Function Pointer Syntax

The syntax for declaring a function pointer might seem messy at first, but in most cases it's really

quite straight-forward once you understand what's going on. Let's look at a simple example:

void (*foo)(int);

In this example, foo is a pointer to a function taking one argument, an integer, and that returns void.
It's as if you're declaring a function called "*foo", which takes an int and returns void; now, if *foo is
a function, then foo must be a pointer to a function. (Similarly, a declaration like int *x can be read as

*X is an int, SO X must be a pointer to an int.)

The key to writing the declaration for a function pointer is that you're just writing out the declaration

of a function but with (*func_name) where you'd normally just put func_name.

Reading Function Pointer Declarations

Sometimes people get confused when more stars are thrown in:

void *(*foo)(int *);

Department of EEE, S|BIT 44

Object Oriented Programming using C++-18EE645 2020-21

Here, the key is to read inside-out; notice that the innermost element of the expression is *foo, and
that otherwise it looks like a normal function declaration. *foo should refer to a function that returns

a void * and takes an int *. Consequently, foo is a pointer to just such a function.

Initializing Function Pointers

To initialize a function pointer, you must give it the address of a function in your program. The

syntax is like any other variable:

#include <stdio.h>
void my_int_func(int x)
{

printf("%d\n", x);

int main()

{
void (*foo)(int);
/* the ampersand is actually optional */

foo = &my int_func;

return O;

}

(Note: all examples are written to be compatible with both C and C++.)

Using a Function Pointer

To call the function pointed to by a function pointer, you treat the function pointer as though it were
the name of the function you wish to call. The act of calling it performs the dereference; there's no

need to do it yourself:

' #include <stdio.h>
| void my _int_func(int x)

K

Department of EEE, S|BIT 45

| Object Oriented Programming using C++-18EFE645 2020-21

printf("%d\n", x);

int main()

{
void (*foo)(int);

foo = &my int_func;

/* call my_int_func (note that you do not need to write (*foo)(2)) */
foo(2);
/* but if you want to, you may */

(*fo0)(2);

return 0;

}

Note that function pointer syntax is flexible; it can either look like most other uses of pointers, with
& and *, or you may omit that part of syntax. This is similar to how arrays are treated, where a bare

array decays to a pointer, but you may also prefix the array with & to request its address.

Function Pointers in the Wild

Let's go back to the sorting example where I suggested using a function pointer to write a generic
sorting routine where the exact order could be specified by the programmer calling the sorting

function. It tuns out that the C function qgsort does just that.

From the Linux man pages, we have the following declaration for gsort (from stdlib.h):

void gsort(void *base, size t nmemb, size t size,

int(*compar)(const void *, const void *));

Note the use of void*s to allow qsort to operate on any kind of data (in C++, you'd normally

use templates for this task, but C++ also allows the use of void* pointers) because void* pointers can

Department of EEE, S|BIT 46

Object Oriented Programming using C++-18EE645 2020-21

point to anything. Because we don't know the size of the individual elements in a void* array, we
must give gsort the number of elements, nmemb, of the array to be sorted, base, in addition to the

standard requirement of giving the length, size, of the input.

But what we're really interested in is the compar argument to gsort: it's a function pointer that takes
two void *s and returns an int. This allows anyone to specify how to sort the elements of the array
base without having to write a specialized sorting algorithm. Note, also, that compar returns an int;
the function pointed to should return -1 if the first argument is less than the second, O if they are

equal, or 1 if the second is less than the first.

For instance, to sort an array of numbers in ascending order, we could write code like this:

#include <stdlib.h>

int int_sorter(const void *first arg, const void *second arg)

{
int first = *(int*)first_arg;
int second = *(int*)second_arg;

if (first <second)

{

return -1;

}

else if (first == second)

{

return 0;

}

else

{

return 1;

Department of EEE, S|BIT 47

Object Oriented Programming using C++-18EE645 2020-21

int main()
{
int array[10];
int 1;
/* fill array */
for (1=0;1<10;++)
{
array[1] =10 - 1;

gsort(array, 10, sizeof(int), int_sorter);
for (1=0;1<10;++)
{

printf ("%d\n" ,array[1]);

}

Using Polymorphism and Virtual Functions Instead of Function Pointers (C++)

You can often avoid the need for explicit function pointers by using virtual functions. For instance,
you could write a sorting routine that takes a pointer to a class that provides a virtual function called

compare:

class Sorter

{
public:

virtual int compare (const void *first, const void *second);

}s

/l cpp_gsort, a gsort using C++ features like virtual functions

void cpp_gsort(void *base, size t nmemb, size t size, Sorter *compar);

Department of EEE, S|BIT 48

Object Oriented Programming using C++-18EE645 2020-21

inside cpp_gsort, whenever a comparison is needed, compar->compare should be called. For classes
that override this virtual function, the sort routine will get the new behavior of that function. For

instance:

class AscendSorter : public Sorter

{

virtual int compare (const void*, const void*)
{

int first = *(int*)first_arg;

int second = *(int*)second_arg;

if (first <second)

{

return -1;
}

else if (first == second)

{

return O;

}

else

and then you could pass in a pointer to an instance of the AscendSorter to cpp_gsort to sort integers

in ascending order.

But Are You Really Not Using Function Pointers?

Virtual functions are implemented behind the scenes using function pointers, so you really are using

function pointers--it just happens that the compiler makes the work easier for you. Using

Department of EEE, S|BIT 49

Object Oriented Programming using C++-18EE645 2020-21

polymorphism can be an appropriate strategy (for instance, it's used by Java), but it does lead to the

overhead of having to create an object rather than simply pass in a function pointer.

Function Pointers Summary

Syntax

Declare a function pointer as though you were declaring a function, except with a name like *foo

instead of just foo:

void (*foo)(int);

Initializing

You can get the address of a function simply by naming it:

void foo();

func_pointer = foo;

or by prefixing the name of the function with an ampersand:

void foo();
func_pointer = &foo;

Invoking

Invoke the function pointed to just as if you were calling a function.

func_pointer(argl, arg?);

or you may optionally dereference the function pointer before calling the function it points to:

(*func_pointer)(argl, arg2);

Benefits of Function Pointers

e Function pointers provide a way of passing around instructions for how to do something

Department of EEE, S|BIT 50

Object Oriented Programming using C++-18EE645 2020-21

e You can write flexible functions and libraries that allow the programmer to choose behavior
by passing function pointers as arguments

o This flexibility can also be achieved by using classes with virtual functions
e (lasses
In C++, a class is declared using the class keyword. The syntax of a class declaration is similar to that of a
structure. Its general form is,class class-name
{
private:
// ptivate functions and variables
public:

// public functions and variables

e object-list;In a class declaration the object-list is optional. The class-name is technically optional. From a
practical point of view it is virtually always needed. The reason is that the class-name becomes a new type
name that is used to declare objects of the class.Functions and variables declared inside the class

declaration are said to be members of the class.

¢ By default, all member functions and variables ate private to that class. This means that they are accessible
by other members of that class. To declare public class members, the public keyword is used, followed by a
colon. All functions and variables declared after the public specifier are accessible both by other members

of the class and by any part of the program that contains the class.

e #include < iostream >

using namespace std;

// class declaration
class myclass
{
// ptivate membets to myclass
int a;
public:
// public members to myclass
void set_a(int num);

int get_a();

Department of EEE, S|BIT 51

Object Oriented Programming using C++-18EE645 2020-21

35

o This class has one private variable, called a, and two public functions set_a() and get_a(). Notice that the
functions are declared within a class using their prototype forms. The functions that are declared to be

part of a class are called member functions.

e Since a is private it is not accessible by any code outside myclass. However since set_a() and get_a() are
member of myclass, they have access to a and as they are declared as public member of myclass, they can

be called by any part of the program that contains myclass.

¢ The member functions need to be defined. You do this by preceding the function name with the class
name followed by two colons (: are called scope resolution operator).

For example, outside the class declaration, you can declare the member function as

e // member functions declaration outside the class
void myclass::set_a(int num)

{

a=num,;

}

int myclass:get_a()

{

return a;

}

In general to declare a member function, you use this form:

return-type class-name::func-name(parameter- list)

{
// body of function

}

Here the class-name is the name of the class to which the function belongs.

e The declaration of a class does not define any objects of the type myclass. It only defines the type of
object that will be created when one is actually declared. To create an object, use the class name as type

specifier. For example,

Department of EEE, S|BIT 52

Object Oriented Programming using C++-18EE645 2020-21

e // from previous examples
void main()
{
myclass ob1, ob2; //these are object of type myclass

// ... program code

e Remember that an object declaration creates a physical entity of that type. That is, an object occupies

memory space, but a type definition does not.

e Once an object of a class has been created, your program can reference its public members by using the
dot operator in much the same way that structure members are accessed. Assuming the preceding object

declaration, here some examples,

e oblsset_a(10); // set ob1’s version of a to 10
ob2.set_a(99); // set ob2’s version of a to 99
cout << obl.get_a(); << "\n";
cout << ob2.get_a(); << "\n";
ob1.a=20; // etror cannot access private member

0b2.a=80; // by non-member functions.

There can be public variables, for example
#include < iostream >
using namespace std;
// class declaration
class myclass
{
public:
int a; //a is now public
// and there is no need for set_a(), get_a()

3
int main()
{

myclass ob1, ob2;

// hete a is accessed directly

obl.a = 10;

Ut
(S8}

Department of EEE, S|BIT

Object Oriented Programming using C++-18EE645 2020-21

ob2.a = 99;
cout << obl.a << "\n";
cout << obl.a << "\n";
return O;
It is important to remember that although all objects of a class share their functions, each object creates

and maintains its own data.

e Constructors and Destructor
e Constructors

e When applied to real problems, virtually every object you create will require some sort of initialisation.
C++ allows a consttuctor function to be included in a class declatation. A class’s constructor is called
each time an object of that class is created. Thus, any initialization to be performed on an object can be

done automatically by the constructor function.

e A constructor function has the same name as the class of which it is a part a part and has not return type.

Here is a short example,

e #include < iostream >
using namespace std;
// class declaration
class myclass
int a;

public:

myclass(); //constructor

void show();

myclass::myclass()

{

cout << "In constructor\n";
a=10;

Department of EEE, S|BIT 54

Object Oriented Programming using C++-18EE645 2020-21

myclass::show()

{

cout << a;

int main()

{

int ob; // automatic call to constructor

ob.show();

return 0;
}
In this simple example the constructor is called when the object is created, and the constructor initialises
the private variable a to 10.For a global object, its constructor is called once, when the program first
begins execution.For local objects, the consttuctor is called each time the declaration statement is

executed.

e Destructors

e The complement of a constructor is the destructor. This function is called when an object is destroyed.
For example, an object that allocates memory when it is created will want to free that memory when it is

destroyed.
e The name of a destructor is the name of its class preceded by a ~. For example,

e myclass:~myclass()

{

cout << "Destructing...\n";

Y/

A class’s destructor is called when an object is destroyed.Local objects are destroyed when they go out of
scope. Global objects are destroyed when the program ends.It is not possible to take the address of either

a constructor or a destructor.

e Note that having a constructor or a destructor perform actions not directly related to initialisation or

orderly destruction of an object makes for very poor programming style and should be avoided.

Ut
u

Department of EEE, S|BIT

Object Oriented Programming using C++-18EE645 2020-21

e Constructors that take parameters
It is possible to pass one or more arguments to a constructor function. Simply add the appropriate
parameters to the constructor function’s declaration and definition. Then, when you declare an object,

specify the arguments.

o #include < iostream >

using namespace std;

// class declaration

class myclass

{
int a;

public:

myclass(int x); //constructor

void show();

myclass::myclass(int x)

{

cout << "In constructor\n";

void myclass::show()

{

cout << a <<"\n";

}

int main()

{
myclass ob(4);

ob.show();

return O;

Department of EEE, S|BIT 56

Object Oriented Programming using C++-18EE645 2020-21

b

Pay particular attention to how ob is declared in main(). The value 4, specified in the parentheses
following ob, is the argument that is passed to myclass()’s parameter x that is used to initialise a. Actually,

the syntax is shorthand for this longer form:

myclass ob = myclass(4);
Unlike constructor functions, destructors cannot have parameters.Although the previous example has

used a constant value, you can pass an object’s constructor any valid expression, including variables.

OBJECT

So far, you have been accessing membets of an object by using the dot operator. This is the correct
method when you are working with an object. However, it is also possible to access a member of an
object via a pointer to that object. When a pointer is used, the atrow operator (->) rather than the dot
operator is employed.You declare an object pointer just as you declate a pointer to any other type of
variable. Specify its class name, and then precede the variable name with an astetisk. To obtain the address
of an object, precede the object with the & operator, just as you do when taking the address of any other

type of variable.

Just as pointers to other types, an object pointer, when incremented, will point to the next object of its

type. Here a simple example,

#include < iostream >
using namespace std;
class myclass
{
int a;
public:
myclass(int x); //constructor
int get();
1B

myclass::myclass(int x)

int myclass::get()

Department of EEE, S|BIT 57

Object Oriented Programming using C++-18EE645 2020-21

return a;
}
int main()
{
myclass ob(120); //ctreate object
myclass *p; //create pointer to object
p=&ob; //put addtess of ob into p
cout << "value using object: " << ob.get();
cout << "\n";
cout << "value using pointer: " << p->get();

return 0;

}

Notice how the declaration

myclass *p;
creates a pointer to an object of myclass. It is important to understand that creation of an object pointer
does not create an object. It creates just a pointer to one. The address of ob is put into p by using the

statement:

p=&ob;

e Tinally, the program shows how the members of an object can be accessed through a pointer.We will

come back to object pointer later. For the moment, here are several special features that relate to them.

e Assigning object
One object can be assigned to another provided that both are of the same type. By default, when one
object is assigned to another, a bitwise copy of all the data members is made. For example, when an object

called ol is assigned to an object called 02 , the contents of all o1’s data are copied into the equivalent

members of 02.

//an example of object assighment.

// ...

Department of EEE, S|BIT 58

Object Oriented Programming using C++-18EE645 2020-21

class myclass

{

int a, b;

public:

void set(int i, intj) {a =i b =j; };

void show() { cout <<a <<""<<b<<"\n";}
I8
int main()

{

myclass o1, 02;

ol.set(10, 4);
//assign ol to 02

02 = ol;

ol.show();
02.show();

return 0;

Thus, when run this program displays

10 4

10 4

Department of EEE, S|BIT 59

Object Oriented Programming using C++-18EE645 2020-21

Remember that assighment between two objects simply makes the data, in those objects, identical. The two

objects are still completely separate.

Only object of the same type can by assign. Further it is not sufficient that the types just be physically similar -

their type names must be the same:

// This progtam has an error

class myclass

int a, b;
public:
void set(int i, intj) {a =1 b =; };

void show() { cout <<a <<"" <<b <<"\n"; }

/* This class is similar to myclass but uses a different
type name and thus appears as a different type to

the compiler

*/

class yourclass

int a, b;
public:
void set(int i, intj) {a =1 b =7; };

void show() { cout <<a <<"" <<b <<"\n"; }

Department of EEE, S|BIT 60

| Object Oriented Programming using C++-18EFE645 2020-21

3

int main()

myclass o1;
yourclass 02;
ol.set(10, 4);

02 = ol; //ERROR objects not of same type

ol.show();
02.show();

return O;

It is important to understand that all data members of one object are assigned to another when assignment is
performed. This included compound data such as arrays. But be careful not to destroy any information that

may be needed later.

Passing object to functions

Objects can be passed to functions as arguments in just the same way that other types of data are passed.
Simply declare the function’s parameter as a class type and then use an object of that class as an argument

when calling the function. As with other types of data, by default all objects are passed by value to a function.

// ..

class samp

{
int i;

public:

Department of EEE, S|BIT 61

Object Oriented Programming using C++-18EE645 2020-21

samp(intn) {i=n; }
int get_i() { return i; }
IE
// Retutn square of o.i
int sqr_it(samp o)
{

return o.get_1()* o.get_1i();

int main()

{
samp a(10), b(2);
cout << sqr_it(a) << "\n";
cout << sqr_it(b) << "\n";

return 0;

As stated, the default method of parameter passing in C++, including objects, is by value. This means that a
bitwise copy of the argument is made and it is this copy that is used by the function. Therefore, changes to the

object inside the function do not affect the object in the call.

As with other types of variables the address of an object can be passed to a function so that the argument used

in the call can be modify by the function.

// Set o4 to its squate.

// This affect the calling argument
void sqr_it(samp *o)

{

Department of EEE, S|BIT 62

Object Oriented Programming using C++-18EE645 2020-21

o->set(o->get_i()*o->get_i());

/] ...

int main()

samp a(10);

sqr_it(&a); // pass a’s address to sqr_it

// ...

Department of EEE, S|BIT 6

Notice that when a copy of an object is created because it is used as an argument to a function, the
constructor function is not called. However when the copy is destroyed (usually by going out of scope

when the function returns), the destructor function is called.

Be careful, the fact that the destructor for the object that is a copy of the argument is executed when the
function terminates can be a source of problems. Particularly, if the object uses as argument allocates
dynamic memory and frees that that memory when destroyed, its copy will free the same memory when

its destructor is called.

One way around this problem of a parameter’s destructor function destroying data needed by the calling
argument is to pass the address of the object and not the object itself. When an address is passed no new

object is created and therefore no destructor is called when the function retutns.

A better solution is to use a special type of constructor called copy constructor, which we will see later on.

Returning object from functions
Functions can return objects. First, declare the function as returning a class type. Second, return an object

of that type using the normal return statement.

Remember that when an object is returned by a function, a temporary object is automatically created
which holds the return value. It is this object that is actually returned by the function. After the value is
returned, this object is destroyed. The destruction of the temporary object might cause unexpected side

effects in some situations (e.g. when freeing dynamically allocated memory).

(O]

Object Oriented Programming using C++-18EE645

//Retutning an object

/] ...

class samp

{

char s[80];
public:

void show() { cout <<'s << "\n"; }

void set(char *str) { strcpy(s, str); |

//Return an object of type samp
samp input()
{
char s[80];
samp str;
cout << "Enter a string: ";
cin >>s;

str.set(s);

return str;

Department of EEE, S|BIT

2020-21

64

Object Oriented Programming using C++-18EE645 2020-21

int main()

samp ob;
//assign returned object to ob
ob = input();

ob.show();

return O;

Friend functions:

e There will be time when you want a function to have access to the private members of a class without
that function actually being a member of that class. Towards this, C++ supports friend functions. A
friend function is not a member of a class but still has access to its private elements.

Friend functions are useful with operator ovetloading and the creation of certain types of I/O functions.
A friend function is defined as a regular, nonmember function. However, inside the class declaration for
which it will be a friend, its prototype is also included, prefaced by the keyword friend. To understand

how this works, here a short example:

//Example of a friend function
// ..

class myclass

{
int n, d;
public:

myclass(int i, int j)

Department of EEE, S|BIT 65

Object Oriented Programming using C++-18EE645 2020-21

. d=j

e //declare a friend of myclass

o friend int isfactor(myclass ob);

}s

/* Here is friend function definition. It returns true
if d is a factor of n. Notice that the keyword friend

is not used in the definition of isfactor().

*/

int isfactor(myclass ob)

{
if (1(ob.n % ob.d)) return 1;

else return 0O;

int main()
{
myclass ob1(10, 2), ob2(13, 3);
if (isfactor(ob1))
cout << "2 1is a factor of 10\n";
else
cout << "2 is not a factor of 10\n";
it (istactor(ob2))

cout << "3 is a factor of 13\n";

Department of EEE, S|BIT 66

Object Oriented Programming using C++-18EE645 2020-21

else
cout << "3 is not a factor of 13\n";

return O;

b

e It is important to understand that a friend function is not a member of the class for which it is a friend.
Thus, it is not possible to call a friend function by using an object name and a class member access

operator (dot or arrow). For example, what follows is wrong.

e obl.sfactor(); / /wrong isfactor is not a membet function

e Instead friend functions are called just like regular functions.Because friends are not members of a class,
they will typically be passed one or more objects of the class for which they ate friends. This is the case
with isfactor(). It is passed an object of myclass, called ob. However, because isfactor() is a friend of
myclass, it can access ob’s private members. If istactor() had not been made a friend of myclass it would
not have access to ob.d or ob.n since n and d ate private members of myclass.

e A friend function is not inherited. That 1s, when a base class includes a friend function, that friend

function is not a friend function of the derived class.

e A friend function can be friends with more than one class. For example,

o //..

class truck; //This is a forward declaration
class car
{
int passengers;
int speed;
public:
car(int p, int s) { passengers = p; speed =s; }

friend int sp_greater(car c, truck t);

Department of EEE, S|BIT 67

Object Oriented Programming using C++-18EE645 2020-21

class truck
{
int weight;
int speed;
public:
truck(int w, int s) { weight = w; speed = s; }

friend int sp_greater(car c, truck t);

int sp_greater(cat c, truck t)

{

return c.speed - t.speed;
b
int main()
{
// ..
}

This program also illustrates one important element: the forward declaration (also called a forward
reference), to tell the compiler that an identifier is the name of a class without actually declaring it.
A function can be a member of one class and a friend of another class. For example,
// ..
class truck; // forward declaration
class car
{
int passengers;
int speed;
public:
car(int p, int s) { passengers = p; speed =s; }
int sp_greater(truck t);
1B

class truck

Department of EEE, S|BIT 68

Object Oriented Programming using C++-18EE645 2020-21

int weight;

int speed;

public:
truck(int w, int s) { weight = w; speed = s; }
//note new use of the scope resolution operator

friend int car::sp_greater(truck t);

b

int car:sp_greater(truck t)

{

return speed - t.speed;
}
int main()
{
// ..
}
One easy way to remember how to use the scope resolution operation it is never wrong to fully specify its

name as above in class truck,

friend int car::sp_greater(truck t);

However, when an object is used to call a member function or access a member variable, the full name is
redundant and seldom used. For example,

// ..

int main() {

int t;

car c1(6, 55);

truck t1(10000, 55);

t = cl.sp_greater(tl); //can be written using the

//tredundant scope as

t = cl.car::sp_greater(tl);

// ...

Department of EEE, S|BIT 69

Object Oriented Programming using C++-18EE645 2020-21

However, since c1 is an object of type car the compiler already knows that sp_greater() is a member of

the car class, making the full class specification unnecessary.

ARRAYS, POINTERS, AND REFERENCES

Objects are variables and have the same capabilities and attributes as any other type of variables.
Therefore, it is perfectly acceptable for objects to be arrayed. The syntax for declaring an array of
objects is exactly as that used to declare an array of any other type of variable. Further, arrays of

objects are accessed just like arrays of other types of variables.

#include < iostream >

using namespace std;

class samp
{
int a;
public:

void set_a(int n) {a = n;}

int get_a() { return a; }

3
int main()
{
samp ob[4]; //atray of 4 objects
int 1
for (1=0; 1<4; i++) ob[i].set_a(l);
for (1=0; i<4; i++) cout << obli].get_a() <<"";
cout << "\n";
return O;
}

Department of EEE, S|BIT 70

Object Oriented Programming using C++-18EE645 2020-21

If the class type include a constructor, an array of objects can be initialised,

// Initialise an array
#include < iostream >
using namespace std;
class samp
{

int a;

public:

samp(intn) {a = n; }

int get_a() { return a; }

int main()
{
samp ob[4] = {-1,-2, -3, -4};
int 1
for (1=0; i<4; i++) cout << obli].get_a() <<"";
cout << "\n"

return 0;

}

You can also have multidimensional arrays of objects. Here an example
// Cteate a two-dimensional array of objects

// ...

class samp
{
int a;
public:
samp(intn) {a = n; }

int get_a() { return a; }

Department of EEE, S|BIT 71

| Object Oriented Programming using C++-18EE645

3

int

main()

samp ob[4][2] = {
1,2,
3, 4,
5,0,
7,81%;

int 1

for (1=0; 1<4; i++)
{
cout << ob[i][0].get_a() << " ",
cout << obl[i][1].get_a() << "\n";
b

cout << "\n";

return O;

}

This program displays,

12
34
56
78

When a constructor uses more than one argument, you must use the alternative format,

// ..

class samp

{

int a, b;
public:

samp(int n, intm) {a =n; b = m; }

Department of EEE, S|BIT

2020-21

Object Oriented Programming using C++-18EE645 2020-21

int get_a() { return a; }

int get_b() { return b; }

int main()
{
samp ob[4][2] = {
samp(1, 2), samp(3, 4),
samp(5, 6), samp(7, 8),
samp(9, 10), samp(11, 12),
samp(13, 14), samp(15, 16)
3
// ...
Note you can always the long form of initialisation even if the object takes only one argument. It is just that the
short form is more convenient in this case.
Using pointers to objects
As you know, when a pointer is used, the object’s members are referenced using the atrow (- >) operator instead
of the dot (.) operator.
Pointer arithmetic using an object pointer is the same as it is for any other data type: it is performed relative to the
type of the object. For example, when an object pointer is incremented, it points to the next object. When an
object pointer is decremented, it points to the previous object.
// Pointet to objects
// ..
class samp {
int a, b;
public:
samp(int n, int m) {a =n;b =m; }
int get_a() { return a; }
int get_b() { return b; }
35
int main() {
samp ob[4] = {
samp(1, 2),
samp(3, 4),
samp(5, 0),

Department of EEE, S|BIT

~1
[OS)

| Object Oriented Programming using C++-18EFE645 2020-21

samp(7, 8)

1

int 1

samp *p;

p = ob; // get starting addtess of atray
for (i=0; i<4; i++) {

cout << p->get_a() <<"";

cout << p->get_b() << "\n";

p+t+; // advance to next object

b
/] .

Reference and Bibliography

1. Object Oriented Programming with C++ E.Balaguruswamy TMH 6th Edition, 2013
2. ObjectOriented Programming with C++ Robert Lafore Galgotia publication 2010
3. ObjectOriented Programming with C++ Sourav Sahay Oxford University 2006

4. DPreece, J. Rogers, Y. and Sharp,H., 2007. Interaction Design: Beyond Human Computer Interaction. 2nd
ed. New York: John Wiley & Sons, Inc.

Department of EEE, S|BIT 74

Object Oriented Programming using C++-18EE645 2020-21

5. Preece, J. Rogers, Y. and Sharp,H., 2001. Interaction Design: Beyond Human Computer Interaction. New
York: John Wiley & Sons, Inc.

6. Andrew, G and Drew, P, 2009, Use Case Diagrams in Support of Use Case Modeling: Detiving
Understanding from the Picture, Journal of Database Management, 20(1), 1- 24, January-March 2009.

Department of EEE, S|BIT

-

wul

