Object Oriented Programming using C++-18EE645

Module-4

2020-21

Inheritance, Pointers, Virtual Functions, Polymorphism

Table of Contents

UNIT No.
DAYS & Title SUB TOPICS Page No.
1 Single inheritance ,Derived Classes 4-6
3 Module-04 | Multilevel, multiple inhetitance 7-17
5 Pointers to objects and derived classes, this pointet 18-34
7 Virtual and pure virtual functions 35-41

Department of EEE, S|BIT

[

Object Oriented Programming using C++-18EE645 2020-21

C++ Inheritance and Derived Classes.

One of the most important concepts in object-oriented programming is that of inheritance.
Inheritance allows us to define a class in terms of another class, which makes it easier to create and
maintain an application. This also provides an opportunity to reuse the code functionality and fast

implementation time.

When creating a class, instead of writing completely new data members and member functions, the
programmer can designate that the new class should inherit the members of an existing class. This

existing class is called the base class, and the new class is referred to as the derived class.

The idea of inheritance implements the is a relationship. For example, mammal IS-A animal, dog IS-

A mammal hence dog IS-A animal as well and so on.

Base & Derived Classes:

A class can be derived from more than one classes, which means it can inherit data and functions
from multiple base classes. To define a derived class, we use a class derivation list to specify the base

class(es). A class derivation list names one or more base classes and has the form:

class derived-class: access-specifier base-class

Where access-specifier is one of public, protected, or private, and base-class is the name of a

previously defined class. If the access-specifier is not used, then it is private by default.

Consider a base class Shape and its derived class Rectangle as follows:

#include <iostream>

using namespace std,;

// Base class

class Shape

Department of EEE, S|BIT 4

| Object Oriented Programming using C++-18EFE645 2020-21

{
public:
void setWidth(int w)
{
width = w;
}
void setHeight(int h)
{
height = h;
}
protected:
int width;
int height;
¥

// Derived class

class Rectangle: public Shape

{
public:
int getArea()
{
return (width * height);
}
}5

int main(void)
{

Rectangle Rect;

Rect.setWidth(5);

Department of EEE, S|BIT 5

Object Oriented Programming using C++-18EE645 2020-21

Rect.setHeight(7);

// Print the area of the object.

cout << "Total area: " << Rect.getArea() << endl;

return 0;

When the above code is compiled and executed, it produces following result:

Total area: 35

Access Control and Inheritance:

A derived class can access all the non-private members of its base class. Thus base-class members
that should not be accessible to the member functions of derived classes should be declared private in

the base class.

We can summarize the different access types according to who can access them in the following way:

Access public protected private
Same class yes yes yes
Derived classes yes yes no
Outside classes yes no no

A derived class inherits all base class methods with the following exceptions:

Constructors, destructors and copy constructors of the base class.

Overloaded operators of the base class.

The friend functions of the base class.

Department of EEE, S|BIT 6

Object Oriented Programming using C++-18EE645 2020-21

Type of Inheritance:

When deriving a class from a base class, the base class may be inherited through public,

protected or private inheritance. The type of inheritance is specified by the access-specifier as

explained above.

We hardly use protected or private inheritance but public inheritance is commonly used. While

using different type of inheritance, following rules are applied:

1.

Public Inheritance: When deriving a class from a public base class, public members of the
base class become public members of the derived class and protected members of the base
class become protected members of the derived class. A base class'sprivate members are
never accessible directly from a derived class, but can be accessed through calls to
the public and protected members of the base class.

Protected Inheritance: When deriving from a protected base
class, public andprotected members of the base class become protected members of the
derived class.

Private Inheritance: When deriving from a private base
class, public and protectedmembers of the base class become private members of the

derived class.

Multiple Inheritances:

A C++ class can inherit members from more than one class and here is the extended syntax:

class derived-class: access baseA, access baseB....

Where access is one of public, protected, or private and would be given for every base class and

they will be separated by comma as shown above. Let us try the following example:

#include <iostream>

Department of EEE, S|BIT 7

Object Oriented Programming using C++-18EE645

using namespace std,;

// Base class Shape
class Shape
{
public:
void setWidth(int w)
{
width = w;
¥
void setHeight(int h)
{
height = h;
¥
protected:
int width;
int height;
3

// Base class PaintCost

class PaintCost

{
public:
int getCost(int area)
{
return area * 70;
h
}5

// Derived class

Department of EEE, S|BIT

2020-21

Object Oriented Programming using C++-18EE645 2020-21

class Rectangle: public Shape, public PaintCost

{
public:
int getArea()
{
return (width * height);
h
3

int main(void)

{

Rectangle Rect;

int area;

Rect.setWidth(5);
Rect.setHeight(7);

area = Rect.getArea();

// Print the area of the object.

cout << "Total area: " << Rect.getArea() << endl;

// Print the total cost of painting

cout << "Total paint cost: $" << Rect.getCost(area) << endl;

return 0;

Hierarchical Inheritance

Department of EEE, S|BIT 9

Object Oriented Programming using C++-18EE645 2020-21

It is the process of deriving two or more classes from single base class. And in turn each of the
derived classes can further be inherited in the same way. Thus it forms hierarchy of classes or a tree

of classes which is rooted at single

class.

Here A is the base class from which we have inherited two classes B and C. From class B we have
inherited D and E and from C we have inherited F and G. Thus the whole arrangement forms a
hierarchy or tree that is rooted at class A.
The syntax and example for hierarchical inheritance in case of C++ is given below:

Syntax:

class A

Department of EEE, S|BIT 10

Object Oriented Programming using C++-18EE645 2020-21

class D : visibility label B

class G : visibility label C

Department of EEE, S|BIT 11

| Object Oriented Programming using C++-18EFE645 2020-21

Here the visibility label can be private, protected or public. If we do not specify any visibility label
then by default is private.

class person

private:
char name[30];
int age;
char address[50];
public:
void get pdata ()
{
cout<<"Enter the name:";
cin>>name;
cout<<"\nEnter the address:";
cin>>address;
b
void put pdata ()
{
cout<<"Name: "<<name;

cout<<"\nAddress: "<<address;

class student : private person

{

Department of EEE, S|BIT 12

Object Oriented Programming using C++-18EE645 2020-21

private:
int rollno;
float marks;
public:
void get stdata ()
{
get pdata ();
cout<<"\nEnter roll number:";
cin>>rollno;
cout<<"\nEnter marks:";
cin>>marks;
}
void put_stdata ()
{
put_pdata ();
cout<<"\nRoll Number: "<<rollno;
cout<<"\nMarks: "<<marks;
h

class faculty : private person
{
private:
char dept[20];
float salary;
public:
void get fdata ()
{
get pdata ();

cout<<"\nEnter department:";

Department of EEE, S|BIT 13

Object Oriented Programming using C++-18EE645 2020-21

cin>>dept;

cout<<"\nEnter salary:";

cin>>salary;

}

void put_fdata ()

{
put_pdata ();
cout<<"\nDepartment: "<<dept;
cout<<"\nSalary: "<<salary;

}

void main ()

{
student stoby;
faculty facobyj;
clrser ();
cout<<"Enter the details of the student:\n";
stobj.get stdata ();
cout<<"\nEnter the details of the faculty member:\n";
facobj.get fdata ();
cout<<"\nStudent info is:\n";
stobj.put_stdata ();
cout<<"\nFaculty Member info is:\n";
facobj.put_fdata ();
getch ();

Here ‘person’ is the base class from which ‘student’” and ‘faculty’ classes have been derived privately

Department of EEE, S|BIT 14

Object Oriented Programming using C++-18EE645

2020-21

so the public members of the “person’ class will become private members of the ‘student’ class and

‘faculty’ class. But the private members will not be inherited.

person class

private:
char name[30];
int age,
char address[50],
public:
void get_pdata ();™\[
»_ voidput_pdata();, | o
, '\'.
a \
e / \ _/'.
/'A/ Private Derivation e
student class \ ,,*’“ faculty class
o 3 N i 1 N
private: 5 / private:
ERY int rollno; N z char dept{20];
= "é float marks; ¥ \ float salary,
— : w; g
A "8’ public: N \. public:
void get stdata (), ALY f void get_fdata ();
void put_stdata (), % R void put_fdata (),
1 b
~ 3 /: 27 : '<
o private: - S| private:
E o void get pdata {); \[a~ == o1d get pdata (),
E 'g void put_pdata (); void put_pdata (),
v
S & 3 p

C++ Hybrid inheritance

slaquiawr

slaquiat

Hybrid inheritance: The method of combining any two or more forms of inheritance in single form

is called hybrid inheritance.

Program:

PROGRAM TO IMPLEMENT HYBRID INHERITANCE?/

#include<conio.h>

Department of EEE, S|BIT

15

Object Oriented Programming using C++-18EE645

#include<iostream.h>

class base

int a;

public:

base()

cout<<’Enter a: *;

cin>>a;

int show()

cout<<’a = “<<a<<endl;

return(a);

~base()

Department of EEE, S|BIT

2020-21

16

Object Oriented Programming using C++-18EE645 2020-21

cout<<’Destructor of base class is executed”’<<endl;

3

class derived]1:public base

int b;

public:

derived1():base()

cout<<’Enter b: *;

cin>>b;

int show1()

cout<<’b = “<<b<<endl;

return(b);

Department of EEE, S|BIT 17

Object Oriented Programming using C++-18EE645

~derived1()

cout<<’Destructor of derived] class is

executed”<<endl;

class derived2:public derivedl

int a,b,c,sum;

public:

derived2():derived1()

cout<<"Enter c: *;

cin>>c;

void show2()

Department of EEE, S|BIT

2020-21

18

Object Oriented Programming using C++-18EE645

a=show();

b=show1();

cout<<’c = “<<¢<<endl;

sum=a+b+c;

cout<<’’Sum of given numbers: “<<sum<<endl;

~derived2()

cout<<’Destructor of derived?2 class is

executed”<<endl;

class derived3:public derivedl

int a,b,c,sum;

public:

derived3():derived1()

Department of EEE, S|BIT

2020-21

| Object Oriented Programming using C++-18EFE645 2020-21

cout<<’Enter c: *;
cin>>c;
}s

void show3()

cout<<”¢ = “<<¢c<<endl;
a=show();

b=show1();

sum=a-+b+c;

cout<<’Sum of given numbers: “<<sum<<endl;

~derived3()

cout<<’Destructor of derived3 class is

executed’<<endl;

Department of EEE, S|BIT 20

| Object Oriented Programming using C++-18EFE645 2020-21
35

void main()

clrscr();

cout<<"Getting data for first object”<<endl;

derived3 d3;

d3.show3();

cout<<"Enter data for second object”<<end];

derived2 d2;

d2.show2();

getch();

Department of EEE, S|BIT 21

Object Oriented Programming using C++-18EE645 2020-21

Virtual Base Classes

Because a class can be an indirect base class to a derived class more than once, C++ provides a way
to optimize the way such base classes work. Virtual base classes offer a way to save space and avoid
ambiguities in class hierarchies that use multiple inheritance.

Each nonvirtual object contains a copy of the data members defined in the base class. This
duplication wastes space and requires you to specify which copy of the base class members you want
whenever you access them.

When a base class is specified as a virtual base, it can act as an indirect base more than once without
duplication of its data members. A single copy of its data members is shared by all the base classes
that use it as a virtual base.

When declaring a virtual base class, the virtual keyword appears in the base lists of the derived
classes.

Consider the class hierarchy in the following figure, which illustrates a simulated lunch line.

Simulated Lunch-Line Graph

I Queue L

CashlerQueue L] LunchQueue L-

S,

ILunr_hCashierQueue L

In the figure, Queue is the base class for both cashierQueue and Lunchoueue. However, when both
classes are combined to form LunchCashierQueue, the following problem arises: the new class
contains two subobjects of type Queue, one from CashierQueue and the other from Lunchoueue. The
following figure shows the conceptual memory layout (the actual memory layout might be
optimized).

Simulated Lunch-Line Object

Department of EEE, S|BIT 22

Object Oriented Programming using C++-18EE645 2020-21

LunchQueus

LunchCashierQuaue

Note that there are two Queue subobjects in the LunchCashierQueue object. The following code
declares gueue to be a virtual base class:

// deriv_VirtualBaseClasses.cpp

/I compile with: /LD

class Queue {};

class CashierQueue : virtual public Queue {};

class LunchQueue : virtual public Queue {};

class LunchCashierQueue : public LunchQueue, public CashierQueue {};

The virtual keyword ensures that only one copy of the subobject Queue is included (see the
following figure).

Simulated Lunch-Line Object with Virtual Base Classes

SNy ...
CashlerQueue | LunchQueue

LunchCashierQueue

A class can have both a virtual component and a nonvirtual component of a given type. This happens

in the conditions illustrated in the following figure.

Virtual and Nonvirtual Components of the Same Class

Department of EEE, S|BIT 23

Object Oriented Programming using C++-18EE645 2020-21

| Queue L-
T 4
virtual virtual nenvirtual
|
CashlerQueus L | LupehQueue L | TakeoutQueus L

f 1

| LunchCashierQueue L

P .

|LunchTakeuutCashlerQueue L

In the figure, CashierQueue and LunchQueue use Queue as a virtual base class.
However, TakeoutQueue specifies Queue as a base class, not a virtual base class.
Therefore,LunchTakeoutCashierQueue has two subobjects of type Queue: one from the inheritance
path that includes LunchCashierQueue and one from the path that includesTakeoutoueue. This is

illustrated in the following figure.

Object Layout with Virtual and Nonvirtual Inheritance

Quele CQueue

CashlerGueue i LunchQueaus I R——

LunchCashierQueue TakecutQueue

LunchTakeoutCashierQueus

Note

Virtual inheritance provides significant size benefits when compared with nonvirtual inheritance.

However, it can introduce extra processing overhead.

If a derived class overrides a virtual function that it inherits from a virtual base class, and if a
constructor or a destructor for the derived base class calls that function using a pointer to the virtual
base class, the compiler may introduce additional hidden "vtordisp" fields into the classes with virtual
bases. The /vd0 compiler option suppresses the addition of the hidden vtordisp constructor/destructor

displacement member. The /vd1l compiler option, the default, enables them where they are necessary.

Department of EEE, S|BIT 24

Object Oriented Programming using C++-18EE645 2020-21

Turn off vtordisps only if you are sure that all class constructors and destructors call virtual functions
virtually.

The /vd compiler option affects an entire compilation module. Use the vtordisp pragma to suppress
and then reenable vtordisp fields on a class-by-class basis:

#pragma vtordisp(off)

class GetReal : virtual public { ... };

#pragma vtordisp(on)

Abstract classes (C++ only)

An abstract class is a class that is designed to be specifically used as a base class. An abstract class
contains at least one pure virtual function. You declare a pure virtual function by using a pure

specifier (= 0) in the declaration of a virtual member function in the class declaration.

The following is an example of an abstract class:

Function 2B: : £ is a pure virtual function. A function declaration cannot have both a pure specifier

and a definition. For example, the compiler will not allow the following:

struct A {
virtual void g() { } =0;

3

You cannot use an abstract class as a parameter type, a function return type, or the type of an explicit
conversion, nor can you declare an object of an abstract class. You can, however, declare pointers

and references to an abstract class. The following example demonstrates this:

Class n is an abstract class. The compiler would not allow the function declarations o g () or void

h (n), declaration of object a, nor the static cast of b to type A.

Virtual member functions are inherited. A class derived from an abstract base class will also be

abstract unless you override each pure virtual function in the derived class.

[\S)
[}

Department of EEE, S|BIT

Object Oriented Programming using C++-18EE645 2020-21

The compiler will not allow the declaration of object d because D2 is an abstract class; it inherited the
pure virtual function f () from AB. The compiler will allow the declaration of object d if you define

function p2: : g ().

Note that you can derive an abstract class from a nonabstract class, and you can override a non-pure

virtual function with a pure virtual function.

You can call member functions from a constructor or destructor of an abstract class. However, the
results of calling (directly or indirectly) a pure virtual function from its constructor are undefined.

The following example demonstrates this:

struct A {

AQ {
direct();

indirect();

}

virtual void direct() = 0;
virtual void indirect() { direct(); }
}5

The default constructor of a calls the pure virtual function direct () both directly and indirectly

(through indirect ()).

The compiler issues a warning for the direct call to the pure virtual function, but not for the indirect

call.
Pointers to objects and derived classes

Pointers are one of the most powerful and confusing aspects of the C language. A pointer is a
variable that holds the address of another variable. To declare a pointer, we use an asterisk between

the data type and the variable name:

Department of EEE, S|BIT 26

Object Oriented Programming using C++-18EE645 2020-21

1 int *pnPtr; // a pointer to an integer value

2 double *pdPtr; / a pointer to a double value

4 int* pnPtr2; // also valid syntax

5 int * pnPtr3; // also valid syntax

Note that an asterisk placed between the data type and the variable name means the variable is being
declared as a pointer. In this context, the asterisk is not a multiplication. It does not matter if the
asterisk is placed next to the data type, the variable name, or in the middle — different programmers

prefer different styles, and one is not inherently better than the other.

Since pointers only hold addresses, when we assign a value to a pointer, the value has to be an

address. To get the address of a variable, we can use the address-of operator (&):

1 intnValue=35;

2 int *pnPtr = &nValue; // assign address of nValue to pnPtr

Conceptually, you can think of the above snippet like this:
phPtr nialue
o}]

It is also easy to see using code:

int nValue = 5;

int *pnPtr = &nValue; // assign address of nValue to pnPtr

cout << &nValue << endl; // print the address of variable nValue

Department of EEE, S|BIT 27

Object Oriented Programming using C++-18EE645 2020-21

cout << pnPtr << endl; // print the address that pnPtr is holding

On the author’s machine, this printed:

0012FF7C
0012FF7C

The type of the pointer has to match the type of the variable being pointed to:

int nValue = 5;

double dValue = 7.0;

int *pnPtr = &nValue; // ok
double *pdPtr = &dValue; // ok
pnPtr = &dValue; // wrong -- int pointer can not point to double value

pdPtr = &nValue; // wrong -- double pointer can not point to int value

Dereferencing pointers

The other operator that is commonly used with pointers is the dereference operator (*). A

dereferenced pointer evaluates to thecontents of the address it is pointing to.

int nValue = 5;
cout << &nValue; // prints address of nValue

cout << nValue; // prints contents of nValue

int *pnPtr = &nValue; // pnPtr points to nValue

cout << pnPtr; // prints address held in pnPtr, which is &nValue

Department of EEE, S|BIT 28

Object Oriented Programming using C++-18EE645 2020-21

cout << *pnPtr; // prints contents pointed to by pnPtr, which is contents of nValue

The above program prints:

0012FF7C
5
0012FF7C
5

In other words, when pnPtr is assigned to &nValue:
pnPtr is the same as &nValue

*pnPtr is the same as nValue

Because *pnPtr is the same as nValue, you can assign values to it just as if it were nValue! The

following program prints 7:

int nValue = 5;

int *pnPtr = &nValue; // pnPtr points to nValue

*pnPtr = 7; // *pnPtr is the same as nValue, which is assigned 7

cout << nValue; // prints 7

Pointers can also be assigned and reassigned:

int nValuel = 5;

int nValue2 = 7;

int *pnPtr;

Department of EEE, S|BIT 29

Object Oriented Programming using C++-18EE645 2020-21

pnPtr = &nValuel; // pnPtr points to nValuel

cout << *pnPtr; // prints 5

pnPtr = &nValue2; // pnPtr now points to nValue2

cout << *pnPtr; // prints 7

The null pointer

Sometimes it is useful to make our pointers point to nothing. This is called a null pointer. We assign

a pointer a null value by setting it to address 0:

int *pnPtr;

pnPtr = 0; // assign address 0 to pnPtr

or shorthand:

int *pnPtr = 0; // assign address 0 to pnPtr

Note that in the last example, the * is not a dereference operator. It is a pointer declaration. Thus we

are assigning address 0 to pnPtr, not the value 0 to the variable that pnPtr points to.

C (but not C++) also defines a special preprocessor define called NULL that evaluates to 0. Even
though this is not technically part of C++, it’s usage is common enough that it will work in every
C++ compiler:

int *pnPtr = NULL; // assign address 0 to pnPtr

Because null pointers point to 0, they can be used inside conditionals:

Department of EEE, S|BIT 30

| Object Oriented Programming using C++-18EFE645 2020-21

if (pnPtr)
cout << "pnPtr is pointing to an integer.";
else

cout << "pnPtr is a null pointer.";

Null pointers are mostly used with dynamic memory allocation, which we will talk about in a few

lessons.
The size of pointers

The size of a pointer is dependent upon the architecture of the computer — a 32-bit computer uses
32-bit memory addresses — consequently, a pointer on a 32-bit machine is 32 bits (4 bytes). On a 64-
bit machine, a pointer would be 64 bits (8 bytes). Note that this is true regardless of what is being
pointed to:

char *pchValue; // chars are 1 byte
int *pnValue; // ints are usually 4 bytes
struct Something
{
int nX, nY, nZ;
¥

Something *psValue; / Something is probably 12 bytes
cout << sizeof(pchValue) << endl; // prints 4

cout << sizeof(pnValue) << endl; // prints 4

cout << sizeof(psValue) << endl; // prints 4

Department of EEE, S|BIT 31

Object Oriented Programming using C++-18EE645 2020-21

As you can see, the size of the pointer is always the same. This is because a pointer is just a memory
address, and the number of bits needed to access a memory address on a given machine is always

constant.

The main purpose of C++ programming is to add object orientation to the C programming language
and classes are the central feature of C++ that supports object-oriented programming and are often

called user-defined types.

A class is used to specify the form of an object and it combines data representation and methods for
manipulating that data into one neat package. The data and functions within a class are called

members of the class.

C++ Class Definitions:

When you define a class, you define a blueprint for a data type. This doesn't actually define any data,
but it does define what the class name means, that is, what an object of the class will consist of and

what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class body,
enclosed by a pair of curly braces. A class definition must be followed either by a semicolon or a list

of declarations. For example we defined the Box data type using the keyword class as follows:

class Box
{
public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

[

Department of EEE, S|BIT 32

Object Oriented Programming using C++-18EE645 2020-21

The keyword public determines the access attributes of the members of the class that follow it. A
public member can be accessed from outside the class anywhere within the scope of the class object.
You can also specify the members of a class as private or protected which we will discuss in a sub-

section.
Define C++ Objects:
A class provides the blueprints for objects, so basically an object is created from a class. We declare

objects of a class with exactly the same sort of declaration that we declare variables of basic types.

Following statements declare two objects of class Box:

Both of the objects Box1 and Box2 will have their own copy of data members.

Accessing the Data Members:

The public data members of objects of a class can be accessed using the direct member access

operator (.). Let us try following example to make the things clear:

#include <iostream>

using namespace std,;

class Box

{
public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

¥

int main()

{

Department of EEE, S|BIT

[N)
(O]

Object Oriented Programming using C++-18EE645 2020-21

Box Boxl1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specification
Box1.height = 5.0;
Box1.length = 6.0;
Box1.breadth = 7.0;

// box 2 specification

Box2.height = 10.0;

Box2.length = 12.0;

Box2.breadth = 13.0;

// volume of box 1

volume = Box1.height * Box1.length * Box1.breadth;

cout << "Volume of Box1 : " << volume <<endl;

// volume of box 2
volume = Box2.height * Box2.length * Box2.breadth;
cout << "Volume of Box2 : " << volume <<end];

return 0;

When the above code is compiled and executed, it produces following result:

Volume of Box1 : 210
Volume of Box2 : 1560

It is important to note that private and protected members can not be accessed directly using direct

member access operator (.). We will learn how private and protected members can be accessed.

Department of EEE, S|BIT 34

| Object Oriented Programming using C++-18EFE645 2020-21

Virtual and Pure virtual functions

So far you have got very basic idea about C++ Classes and Objects. There are further interesting concepts related to

C++ Classes and Objects which we will discuss in various sub-sections listed below:

Concept Description

Class member functions A member function of a class is a function

that has its definition or its prototype
within the class definition like any other

variable.

Class access modifiers A class member can be defined as public,

private or protected. By default members

would be assumed as private.

Constructor & destructor A class constructor is a special function in

a class that is called when a new object of
the class is created. A destructor is also a
special function which is called when

created object is deleted.

C++ copy constructor The copy constructor is a constructor

which creates an object by initializing it
with an object of the same class, which has

been created previously.

C++ friend functions A friend function is permitted full access

to private and protected members of a

class.

Department of EEE, S|BIT

8%}
w

Object Oriented Programming using C++-18EE645 2020-21

C++ inline functions With an inline function, the compiler tries
to expand the code in the body of the

function in place of a call to the function.

The this pointer in C++ Every object has a special

pointer this which points to the object
itself.

Pointer to C++ classes A pointer to a class is done exactly the

same way a pointer to a structure is. In fact
a class is really just a structure with

functions in it.

Static members of a class Both data members and function members

of a class can be declared as static.

C++ Files and Streams

So far we have been using the iostream standard library, which provides cin and cout methods for

reading from standard input and writing to standard output respectively.

This tutorial will teach you how to read and write from a file. This requires another standard C++

library called fstream which defines three new data types:

Data Type Description

ofstream This data type represents the output file stream
and is used to create files and to write information

to files.

ifstream This data type represents the input file stream and

is used to read information from files.

Department of EEE, S|BIT 36

Object Oriented Programming using C++-18EE645 2020-21

fstream This data type represents the file stream generally,
and has the capabilities of both ofstream and
ifstream which means it can create files, write

information to files, and read information from

files.

To perform file processing in C++, header files <iostream> and <fstream> must be included in your

C++ source file.

Opening a File:

A file must be opened before you can read from it or write to it. Either the ofstream or fstreamobject
may be used to open a file for writing and ifstream object is used to open a file for reading purpose

only.

Following is the standard syntax for open() function which is a member of fstream, ifstream, and

ofstream objects.

void open(const char *filename, i0s::openmode mode);

Here the first argument specifies the name and location of the file to be opened and the second

argument of the open() member function defines the mode in which the file should be opened.

Mode Flag Description

10s::app Append mode. All output to that file to be
appended to the end.

10s::ate Open a file for output and move the read/write

control to the end of the file.
10s::1in Open a file for reading.

10s::out Open a file for writing.

Department of EEE, S|BIT 37

Object Oriented Programming using C++-18EE645 2020-21

10s::trunc If the file already exists, its contents will be

truncated before opening the file.

You can combine two or more of these values by ORing them together. For example if you want to

open a file in write mode and want to truncate it in case it already exists, following will be the syntax:

Closing a File

When a C++ program terminates it automatically closes flushes all the streams, release all the
allocated memory and close all the opened files. But it is always a good practice that a programmer

should close all the opened files before program termination.

Following is the standard syntax for close() function which is a member of fstream, ifstream, and

ofstream objects.

Writing to a File:

While doing C++ programming, you write information to a file from your program using the stream
insertion operator (<<) just as you use that operator to output information to the screen. The only

difference is that you use an ofstream or fstream object instead of the cout object.

Reading from a File:

You read information from a file into your program using the stream extraction operator (<<) just as
you use that operator to input information from the keyboard. The only difference is that you use

an ifstream or fstream object instead of the cin object.

Read & Write Example:

Following is the C++ program which opens a file in reading and writing mode. After writing
information inputted by the user to a file named afile.dat, the program reads information from the file

and outputs it onto the screen:

#include <fstream>

Department of EEE, S|BIT 38

Object Oriented Programming using C++-18EE645

#include <iostream>

using namespace std;

int main ()

{

char data[100];

// open a file in write mode.
ofstream outfile;

outfile.open("afile.dat");
cout << "Writing to the file" << endl;
cout << "Enter your name: ";

cin.getline(data, 100);

// write inputted data into the file.

outfile << data << endl,
cout << "Enter your age: ";
cin >> data;

cin.ignore();

// again write inputted data into the file.

outfile << data << end],;

// close the opened file.

outfile.close();

// open a file in read mode.

Department of EEE, S|BIT

2020-21

Object Oriented Programming using C++-18EE645 2020-21

ifstream infile;

infile.open("afile.dat");

cout << "Reading from the file" << endl;

infile >> data;

// write the data at the screen.

cout << data << endl,

// again read the data from the file and display it.
infile >> data;

cout << data << endl,

// close the opened file.

infile.close();

return 0;

Above examples makes use of additional functions from cin object, like getline() function to read the

line from outside and ignore() function to ignore the extra characters left by previous read statement.

File Position Pointers:

Both istream and ostream provide member functions for repositioning the file-position pointer.

These member functions are seekg ("seek get") for istream and seekp ("seek put") for ostream.

The argument to seekg and seekp normally is a long integer. A second argument can be specified to
indicate the seek direction. The seek direction can be ios::beg (the default) for positioning relative to
the beginning of a stream, ios::cur for positioning relative to the current position in a stream

or ios::end for positioning relative to the end of a stream.

Department of EEE, S|BIT 40

Object Oriented Programming using C++-18EE645 2020-21

The file-position pointer is an integer value that specifies the location in the file as a number of bytes

from the file's starting location. Some examples of positioning the "get" file-position pointer are:

An exception is a problem that arises during the execution of a program. A C++ exception is a
response to an exceptional circumstance that arises while a program is running, such as an attempt to

divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. C++ exception

handling is built upon three keywords: try, catch, and throw.

1. throw: A program throws an exception when a problem shows up. This is done using
athrow keyword.

2. catch: A program catches an exception with an exception handler at the place in a program
where you want to handle the problem. The catch keyword indicates the catching of an
exception.

3. try: A try block identifies a block of code for which particular exceptions will be activated.

It's followed by one or more catch blocks.

Assuming a block will raise and exception, a method catches an exception using a combination of
the try and catch keywords. A try/catch block is placed around the code that might generate an
exception. Code within a try/catch block is referred to as protected code, and the syntax for using

try/catch looks like the following:

You can list down multiple catch statements to catch different type of exceptions in case

yourtry block raises more than one exceptions in different situations.

Throwing Exceptions:

Exceptions can be thrown anywhere within a code block using throw statements. The operand of the
throw statements determines a type for the exception and can be any expression and the type of the

result of the expression determines the type of exception thrown.

Following is an example of throwing an exception when dividing by zero condition occurs:

Department of EEE, S|BIT 41

Object Oriented Programming using C++-18EE645 2020-21

Catching Exceptions:

The catch block following the try block catches any exception. You can specify what type of
exception you want to catch and this is determined by the exception declaration that appears in

parentheses following the keyword catch.

try
{
// protected code
}catch(ExceptionName ¢)

{

// code to handle ExceptionName exception

}

Above code will catch an exception of ExceptionName type. If you want to specify that a catch
block should handle any type of exception that is thrown in a try block, you must put an ellipsis, ...,

between the parentheses enclosing the exception declaration as follows:

The following is an example which throws a division by zero exception and we catch it in catch

block.

#include <iostream>

using namespace std,;

double division(int a, int b)

{
if(b==0)

{

throw "Division by zero condition!";

}

return (a/b);

Department of EEE, S|BIT 42

Object Oriented Programming using C++-18EE645 2020-21

int main ()

{
int x = 50;
inty=0;
double z = 0;

try {

z = division(x, y);

cout << z << endl;
}catch (const char* msg) {

cerr << msg << endl;

}

return 0;

Reference and Bibliography

1. Object Oriented Programming with C++ E.Balaguruswamy TMH 6th Edition, 2013
2. ObjectOriented Programming with C++ Robert Lafore Galgotia publication 2010
3. ObjectOtiented Programming with C++ Sourav Sahay Oxford University 2006

4. DPreece, J. Rogers, Y. and Sharp,H., 2007. Interaction Design: Beyond Human Computer Interaction. 2nd
ed. New York: John Wiley & Sons, Inc.

5. DPreece, J. Rogers, Y. and Sharp,H., 2001. Interaction Design: Beyond Human Computer Interaction. New
York: John Wiley & Sons, Inc.

6. Andrew, G and Drew, P, 2009, Use Case Diagrams in Support of Use Case Modeling: Deriving
Understanding from the Picture, Journal of Database Management, 20(1), 1- 24, January-March 2009.

Department of EEE, S|BIT 43

Object Oriented Programming using C++-18EE645 2020-21

Department of EEE, S|BIT 44

