Operating Systems | BCS303

COURSE NAME: OPERATING SYSTEMS
COURSE CODE: BCS303

SEMESTER: 3

MODULE: 3

NUMBER OF HOURS: 10

CONTENTS:

% Deadlocks:

*

<» Memory Management:

*

Question Bank:

>

L)

*

WEB RESOURCES:

https://www.geeksforgeeks.org/operating-systems/
https://www.tutorialspoint.com/operating system/index.htm

D)

1 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

https://www.geeksforgeeks.org/operating-systems/
https://www.tutorialspoint.com/operating_system/index.htm

Operating Systems | BCS303

MODULE 3

DEADLOCKS

A process requests resources, if the resources are not available at that time, the process enters a
waiting state. Sometimes, a waiting process is never again able to change state, because the
resources it has requested are held by other waiting processes. This situation is called a
Deadlock.

SYSTEM MODEL

e A system consists of a finite number of resources to be distributed among a number of
competing processes. The resources are partitioned into several types, each consisting of
some number of identical instances. Memory space, CPU cycles, files, and 1/0 devices
are examples of resource types.

e A process must request a resource before using it and must release the resource after
using it. A process may request as many resources as it requires carrying out its
designated task. The number of resources requested may not exceed the total number of
resources available in the system.

Under the normal mode of operation, a process may utilize a resource in only the following
sequence:
1. Request: The process requests the resource. If the request cannot be granted
immediately, then the requesting process must wait until it can acquire the resource.
2. Use: The process can operate on the resource.
3. Release: The process releases the resource.

A set of processes is in a deadlocked state when every process in the set is waiting for an event
that can be caused only by another process in the set. The events with which we are mainly
concerned here are resource acquisition and release. The resources may be either physical
resources or logical resources

To illustrate a deadlocked state, consider a system with three CD RW drives.

Suppose each of three processes holds one of these CD RW drives. If each process now
requests another drive, the three processes will be in a deadlocked state.

Each is waiting for the event "CD RW is released,” which can be caused only by one of the
other waiting processes. This example illustrates a deadlock involving the same resource type.

2 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Deadlocks may also involve different resource types. For example, consider a system with one
printer and one DVD drive. Suppose that process Pi is holding the DVD and process P; is
holding the printer. If Pi requests the printer and P; requests the DVD drive, a deadlock occurs.

DEADLOCK CHARACTERIZATION

Necessory Condifions

A deadlock situation can arise if the following four conditions hold simultaneously in a system:

1. Mutual exclusion: At least one resource must be held in a non-sharable mode, that is,
only one process at a time can use the resource. If another process requests that resource,
the requesting process must be delayed until the resource has been released.

2. Hold and wait: A process must be holding at least one resource and waiting to acquire
additional resources that are currently being held by other processes.

3. No preemption: Resources cannot be preempted; that is, a resource can be released only
voluntarily by the process holding it, after that process has completed its task.

4. Circular wait: A set {Po, P), ... , Pn} of waiting processes must exist such that P, is

waiting for a resource held by P, P: is waiting for a resource held by P2, ... , Pn1is
waiting for a resource held by Pnand Py is waiting for a resource held by Po.

Resowrce~ Alotation Gropih

Deadlocks can be described in terms of a directed graph called System Resource-Allocation
Graph

The graph consists of a set of vertices V and a set of edges E. The set of vertices V is
partitioned into two different types of nodes:

o P ={Py, Py, ...,Pn}, the set consisting of all the active processes in the system.

e R ={R1, Ry, ..., Rm} the set consisting of all resource types in the system.

A directed edge from process Pi to resource type R;is denoted by Pi — R; it signifies that
process Pi has requested an instance of resource type R; and is currently waiting for that
resource.
A directed edge from resource type R;jto process Piis denoted by Rj — Pi; it signifies that an
instance of resource type Rj has been allocated to process Pi.

o A directed edge Pi — R;jis called a Request Edge.

o A directed edge Rj— Piis called an Assignment Edge.

3 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Pictorially each process Pj as a circle and each resource type Rjas a rectangle. Since resource
type R; may have more than one instance, each instance is represented as a dot within the
rectangle.

A request edge points to only the rectangle R;, whereas an assignment edge must also designate
one of the dots in the rectangle.

When process Pi requests an instance of resource type Rj a request edge is inserted in the
resource-allocation graph. When this request can be fulfilled, the request edge is
instantaneously transformed to an assignment edge. When the process no longer needs access
to the resource, it releases the resource; as a result, the assignment edge is deleted.

The resource-allocation graph shown in Figure depicts the following situation.

4

®

° °
°

The sets P, K and E:
o P= {Pl, Pz, P3}
e R= {Rl, Rz, R3, R4}
e E={PI>R,P2—>R3 Ri—>P2R2—>P2,R2—>P;,Rs —>P3}

Resource instances:

o One instance of resource type R1
Two instances of resource type R»
One instance of resource type Rs
Three instances of resource type Rs

Process states:
e Process P; is holding an instance of resource type R2 and is waiting for an instance of
resource type Ru.
e Process P2 is holding an instance of R1 and an instance of Rz and is waiting for an
instance of Ras.
e Process Ps is holding an instance of Ra.

4 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

If the graph does contain a cycle, then a deadlock may exist.

e If each resource type has exactly gne instance, then a cycle implies that a deadlock has
occurred. If the cycle involves only a set of resource types, each of which has only a
single instance, then a deadlock has occurred. Each process involved in the cycle is
deadlocked.

e If each resource type has several instances, then a cycle does not necessarily imply that
a deadlock has occurred. In this case, a cycle in the graph is a necessary but not a
sufficient condition for the existence of deadlock.

To illustrate this concept, the resource-allocation graph depicted in below figure:
Suppose that process P3 requests an instance of resource type R2. Since no resource instance is
currently available, a request edge P3 — R2 is added to the graph. At this point, two minimal
cycles exist in the system:

1. P1 »R1 - P2 - R3 - P3 —> R2-P1

2. P2 5 R3 - P3 —> R2 — P2

R R,
L)

I\’ |°\|

\
° °
°
R, °

Ra
Figure: Resource-allocation graph with a deadlock.

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3, which is
held by process P3. Process P3 is waiting for either process P1 or process P2 to release resource

R2. In addition, process P1 is waiting for process P2 to release resource R1.

Consider the resource-allocation graph in below Figure. In this example also have a cycle:

P1-R1—-P3—R2—P1
.
o 5
(P
Ry
N

e

Figure: Resource-allocation graph with a cycle but no deadlock

5 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

However, there is no deadlock. Observe that process P4 may release its instance of resource
type R2. That resource can then be allocated to P3, breaking the cycle.

METHODS FOR HANDLING DEADLOCKS

The deadlock problem can be handled in one of three ways:
1. Use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter a
deadlocked state.
2. Allow the system to enter a deadlocked state, detect it, and recover.
3. Ignore the problem altogether and pretend that deadlocks never occur in the system.

To ensure that deadlocks never occur, the system can use either deadlock prevention or a
deadlock-avoidance scheme.

Deadlock prevention provides a set of methods for ensuring that at least one of the necessary
conditions cannot hold. These methods prevent deadlocks by constraining how requests for
resources can be made.

Deadlock-avoidance requires that the operating system be given in advance additional
information concerning which resources a process will request and use during its lifetime. With
this additional knowledge, it can decide for each request whether or not the process should
wait. To decide whether the current request can be satisfied or must be delayed, the system
must consider the resources currently available, the resources currently allocated to each
process, and the future requests and releases of each process

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm,
then a deadlock situation may arise. In this environment, the system can provide an algorithm
that examines the state of the system to determine whether a deadlock has occurred and an
algorithm to recover from the deadlock.

In the absence of algorithms to detect and recover from deadlocks, then the system is in a
deadlock state yet has no way of recognizing what has happened. In this case, the undetected
deadlock will result in deterioration of the system's performance, because resources are being
held by processes that cannot run and because more and more processes, as they make requests
for resources, will enter a deadlocked state. Eventually, the system will stop functioning and
will need to be restarted manually.

6 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

DEADLOACK PREVENTION

Deadlock can be prevented by ensuring that at least one of the four necessary conditions cannot

hold.

Mutual Exclusion

The mutual-exclusion condition must hold for non-sharable resources. Sharable
resources, do not require mutually exclusive access and thus cannot be involved in a
deadlock.

Ex: Read-only files are example of a sharable resource. If several processes attempt to
open a read-only file at the same time, they can be granted simultaneous access to the
file. A process never needs to wait for a sharable resource.

Deadlocks cannot prevent by denying the mutual-exclusion condition, because some
resources are intrinsically non-sharable.

Hold and Wait
To ensure that the hold-and-wait condition never occurs in the system, then guarantee that,
whenever a process requests a resource, it does not hold any other resources.

Ex:

One protocol that can be used requires each process to request and be allocated all its
resources before it begins execution.

Another protocol allows a process to request resources only when it has none. A process
may request some resources and use them. Before it can request any additional
resources, it must release all the resources that it is currently allocated.

Consider a process that copies data from a DVD drive to a file on disk, sorts the file, and
then prints the results to a printer. If all resources must be requested at the beginning of
the process, then the process must initially request the DVD drive, disk file, and printer.
It will hold the printer for its entire execution, even though it needs the printer only at
the end.

The second method allows the process to request initially only the DVD drive and disk
file. It copies from the DVD drive to the disk and then releases both the DVD drive and
the disk file. The process must then again request the disk file and the printer. After
copying the disk file to the printer, it releases these two resources and terminates.

The two main disadvantages of these protocols:

1.

2.

Resource utilization may be low, since resources may be allocated but unused for a long
period.
Starvation is possible.

7

Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

No Preemption
The third necessary condition for deadlocks is that there be no preemption of resources that

have already been allocated.

To ensure that this condition does not hold, the following protocols can be used:

e If a process is holding some resources and requests another resource that cannot be
immediately allocated to it, then all resources the process is currently holding are
preempted.

e The preempted resources are added to the list of resources for which the process is
waiting. The process will be restarted only when it can regain its old resources, as well
as the new ones that it is requesting.

If a process requests some resources, first check whether they are available. If they are, allocate
them.

If they are not available, check whether they are allocated to some other process that is waiting
for additional resources. If so, preempt the desired resources from the waiting process and
allocate them to the requesting process.

If the resources are neither available nor held by a waiting process, the requesting process must
wait. While it is waiting, some of its resources may be preempted, but only if another process
requests them.

A process can be restarted only when it is allocated the new resources it is requesting and
recovers any resources that were preempted while it was waiting.

Circular Wait
One way to ensure that this condition never holds is to impose a total ordering of all resource
types and to require that each process requests resources in an increasing order of enumeration.

To illustrate, let R = {R1, R2, ... , Rm} be the set of resource types. Assign a unique integer
number to each resource type, which allows to compare two resources and to determine
whether one precedes another in ordering. Formally, it defined as a one-to-one function

F: R ->N, where N is the set of natural numbers.

Example: if the set of resource types R includes tape drives, disk drives, and printers, then the
function F might be defined as follows:

F (tape drive) =1

F (disk drive) =5

F (printer) = 12

Now consider the following protocol to prevent deadlocks. Each process can request resources
only in an increasing order of enumeration. That is, a process can initially request any number
of instances of a resource type -R;. After that, the process can request instances of resource type
R;j if and only if F(R;) > F(R)).

8 | Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

DEADLOCK AVOIDANCE

To avoid deadlocks an additional information is required about how resources are to be
requested. With the knowledge of the complete sequence of requests and releases for
each process, the system can decide for each request whether or not the process should
wait in order to avoid a possible future deadlock

Each request requires that in making this decision the system consider the resources
currently available, the resources currently allocated to each process, and the future
requests and releases of each process.

The various algorithms that use this approach differ in the amount and type of
information required. The simplest model requires that each process declare the
maximum number of resources of each type that it may need. Given this a priori
information, it is possible to construct an algorithm that ensures that the system will
never enter a deadlocked state. Such an algorithm defines the deadlock-avoidance
approach.

Safe State

In this
until a

Safe state: A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. A system is in a safe state only if
there exists a safe sequence.

Safe sequence: A sequence of processes <P1, P2, ..., Pn> is a safe sequence for the
current allocation state if, for each Pi, the resource requests that Pi can still make can be
satisfied by the currently available resources plus the resources held by all Pj, with j <i.

situation, if the resources that Pi needs are not immediately available, then Pi can wait
Il Pj have finished. When they have finished, Pi can obtain all of its needed resources,

complete its designated task, return its allocated resources, and terminate. When Pi terminates,
Pi+1 can obtain its needed resources, and so on. If no such sequence exists, then the system
state is said to be unsafe.

A safe
unsafe

state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. Not all
states are deadlocks as shown in figure. An unsafe state may lead to a deadlock. As long

as the state is safe, the operating system can avoid unsafe states

9

Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

unsafe

deadlock

/%

Figure: Safe, unsafe, and deadlocked state spaces.

Resource-Allocation-Graph Algorithm

e |f a resource-allocation system has only one instance of each resource type, then a
variant of the resource-allocation graph is used for deadlock avoidance.

e In addition to the request and assignment edges, a new type of edge is introduced, called
a claim edge.

e A claim edge Pi ->Rj indicates that process Pi may request resource Rj at some time in
the future. This edge resembles a request edge in direction but is represented in the
graph by a dashed line.

e When process Pi requests resource Rj, the claim edge Pi ->Rj is converted to a request
edge. When a resource Rj is released by Pi the assignment edge Rj->Pi is reconverted to
a claim edge Pi->Rj.

Figure: Resource-allocation graph for deadlock avoidance.

Note that the resources must be claimed a priori in the system. That is, before process Pi starts
executing, all its claim edges must already appear in the resource-allocation graph.

We can relax this condition by allowing a claim edge Pi ->Rj to be added to the graph only if
all the edges associated with process Pi are claim edges.

Now suppose that process Pi requests resource Rj. The request can be granted only if
converting the request edge Pi ->Rj to an assignment edge Rj->Pi does not result in the
formation of a cycle in the resource-allocation graph.

10 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

There is need to check for safety by using a cycle-detection algorithm. An algorithm for
detecting a cycle in this graph requires an order of n? operations, where n is the number of
processes in the system.

e If no cycle exists, then the allocation of the resource will leave the system in a safe state.

e If a cycle is found, then the allocation will put the system in an unsafe state. In that case,
process Pi will have to wait for its requests to be satisfied.

To illustrate this algorithm, consider the resource-allocation graph as shown above. Suppose
that P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, since this action
will create a cycle in the graph.
A cycle, indicates that the system is in an unsafe state. If P1 requests R2, and P2 requests R1,
then a deadlock will occur.

R,

Figure: An unsafe state in a resource-allocation graph

Banker's Algorithm

The Banker’s algorithm is applicable to a resource allocation system with multiple instances of
each resource type.

e When a new process enters the system, it must declare the maximum number of
instances of each resource type that it may need. This number may not exceed the total
number of resources in the system.

e When a user requests a set of resources, the system must determine whether the
allocation of these resources will leave the system in a safe state. If it will, the resources
are allocated; otherwise, the process must wait until some other process releases enough
resources.

11 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

To implement the banker's algorithm the following data structures are used.

Let n = number of processes, and m = number of resources types

Available: A vector of length m indicates the number of available resources of each type. If
available [j] = k, there are k instances of resource type Rj available.

Max: An n x m matrix defines the maximum demand of each process. If Max [i,j] =k, then
process Pi may request at most k instances of resource type Rj

Allocation: An n x m matrix defines the number of resources of each type currently allocated to
each process. If Allocation[i,j] = k then Pi is currently allocated k instances of Rj

Need: An n x m matrix indicates the remaining resource need of each process. If Need[i,j] = k,
then Pi may need k more instances of Rj to complete its task.

Need [i,j] = Max[i,j] — Allocation [i,j]

Safety Algorithm

The algorithm for finding out whether or not a system is in a safe state. This algorithm can be
described as follows:

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available
Finish [i] = false fori=0, 1,...,n- 1

2. Find an index i such that both:
(a) Finish[i] = false
(b) Needi< Work
If no such i exists, go to step 4

3. Work = Work + Allocation;
Finish[i] = true
go to step 2

4. 1If Finish [i] == true for all i, then the system is in a safe state

This algorithm may require an order of m x n? operations to determine whether a state is safe.

12 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Resource-Request Algorithm

The algorithm for determining whether requests can be safely granted.

Let Request; be the request vector for process Pi. If Requesti[j] == k, then process Piwants k
instances of resource type R;. When a request for resources is made by process Pi, the following
actions are taken:

1. If Requesti<Need;go to step 2. Otherwise, raise error condition, since process has exceeded
its maximum claim

2. If Requesti<Available, go to step 3. Otherwise P; must wait, since resources are not available

3. Have the system pretend to allocate requested resources to Pi by modifying the state as
follows:

Available = Available — Request;

Allocationi= Allocation; + Request;;

Needi=Need; — Request;;

If safe = the resources are allocated to Pi
If unsafe = Pi must wait, and the old resource-allocation state is restored

Example

Consider a system with five processes Pothrough P4and three resource types A, B, and C.
Resource type A has ten instances, resource type B has five instances, and resource type C has
seven instances. Suppose that, at time Tothe following snapshot of the system has been taken:

Allocation Max Available
ABC ABC ABC
Py 010 753 332
P, 200 322
P, 302 902
P 211 222
P, 002 433

13 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

The content of the matrix Need is defined to be Max - Allocation

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

The system is currently in a safe state. Indeed, the sequence <P1, Ps, Ps, P2, Po> satisfies the
safety criteria.

Suppose now that process P1 requests one additional instance of resource type A and two
instances of resource type C, so Request: = (1,0,2). Decide whether this request can be
immediately granted.

Check that Request < Available
(1,0,2) <£(3,3,2) = true

Then pretend that this request has been fulfilled, and the following new state is arrived.

Allocation Need Available

ABC ABC ABC
P, 010 743 230
P4 302 020
P, 302 600
Py 211 011
Py 002 431

Executing safety algorithm shows that sequence <P1, P3, Ps, Po, P>> satisfies safety
requirement.

14 | Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

DEADLOCK DETECTION

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm,
then a deadlock situation may occur. In this environment, the system may provide:
e An algorithm that examines the state of the system to determine whether a deadlock has
occurred
e An algorithm to recover from the deadlock

Single Instance of Each Resource Type

o If all resources have only a single instance, then define a deadlock detection algorithm
that uses a variant of the resource-allocation graph, called a wait-for graph.

e This graph is obtained from the resource-allocation graph by removing the resource
nodes and collapsing the appropriate edges.

e An edge from Pito P;jin a wait-for graph implies that process Piis waiting for process P;
to release a resource that Pj needs. An edge Pi — Pj exists in a wait-for graph if and only
if the corresponding resource allocation graph contains two edges Pi —Rq and Rq—P; for
some resource Ryq.

Example: In below Figure, a resource-allocation graph and the corresponding wait-for graph is
presented.

(b)

Figure: (a) Resource-allocation graph. (b) Corresponding wait-for graph.

e A deadlock exists in the system if and only if the wait-for graph contains a cycle. To
detect deadlocks, the system needs to maintain the wait-for graph and periodically
invoke an algorithm that searches for a cycle in the graph.

e An algorithm to detect a cycle in a graph requires an order of n?operations, where n is
the number of vertices in the graph.

15 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Several Instances of a Resource Type

A deadlock detection algorithm that is applicable to several instances of a resource type. The
algorithm employs several time-varying data structures that are similar to those used in the
banker's algorithm.

e Available: A vector of length m indicates the number of available resources of each
type.

e Allocation: Ann x m matrix defines the number of resources of each type currently
allocated to each process.

e Request: An n x m matrix indicates the current request of each process. If Request[i][j]
equals k, then process P; is requesting k more instances of resource type Rj.

Algorithm:

1. Let Work and Finish be vectors of length m and n, respectively Initialize:
(@) Work = Available
(b) Fori=1,2, ..., n, if Allocationi= 0, then Finishl[i] = false;
otherwise, Finish[i] = true

2. Find an index isuch that both:
(a) Finish[i] ==false
(b)Requesti<Work

If no such i exists, go to step 4
3. Work = Work + Allocation;

Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1 <i<n, then the system is in deadlock state. Moreover, if
Finish[i] == false, then P is deadlocked

Algorithm requires an order of O(m x n? operations to detect whether the system is in
deadlocked state
Example of Detection Algorithm

Consider a system with five processes Po through P4 and three resource types A, B, and C.
Resource type A has seven instances, resource type B has two instances, and resource type C
has six instances. Suppose that, at time To, the following resource-allocation state:

16 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Allocation Request Available

ABC ABC ABC
P, 010 000 000
P, 200 202
P, 303 000
P 211 100
Py 002 002

After executing the algorithm, Sequence <Po, P2, P3, P1, P4+> will result in Finish[i] = true for
all'i

Suppose now that process P2 makes one additional request for an instance of type C. The
Request matrix is modified as follows:

Request

ABC
F, 000
P, 202
P, 001
Py, 100
P, 002

The system is now deadlocked. Although we can reclaim the resources held by process Po, the
number of available resources is not sufficient to fulfill the requests of the other processes.
Thus, a deadlock exists, consisting of processes P1, P2, P3, and P4.

Detection-Algorithm Usage

The detection algorithm can be invoked on two factors:
1. How often is a deadlock likely to occur?
2. How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked frequently.
Resources allocated to deadlocked processes will be idle until the deadlock can be broken.

If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph
and so we would not be able to tell which of the many deadlocked processes “caused” the

deadlock.

17 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

RECOVERY FROM DEADLOCK

The system recovers from the deadlock automatically. There are two options for breaking a
deadlock one is simply to abort one or more processes to break the circular wait. The other is to
preempt some resources from one or more of the deadlocked processes.

Process Termination
To eliminate deadlocks by aborting a process, use one of two methods. In both methods, the
system reclaims all resources allocated to the terminated processes.

1. Abort all deadlocked processes: This method clearly will break the deadlock cycle, but
at great expense; the deadlocked processes may have computed for a long time, and the
results of these partial computations must be discarded and probably will have to be
recomputed later.

2. Abort one process at a time until the deadlock cycle is eliminated: This method
incurs considerable overhead, since after each process is aborted, a deadlock-detection

algorithm must be invoked to determine whether any processes are still deadlocked.

If the partial termination method is used, then we must determine which deadlocked process (or
processes) should be terminated. Many factors may affect which process is chosen, including:

1. What the priority of the process is

How long the process has computed and how much longer the process will compute
before completing its designated task

How many and what types of resources the process has used.

How many more resources the process needs in order to complete

How many processes will need to be terminated?

Whether the process is interactive or batch

N

o Ok w

Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt some resources
from processes and give these resources to other processes until the deadlock cycle is broken.
If preemption is required to deal with deadlocks, then three issues need to be addressed:

1. Selecting a victim. Which resources and which processes are to be preempted? As in
process termination, we must determine the order of preemption to minimize cost. Cost
factors may include such parameters as the number of resources a deadlocked process is
holding and the amount of time the process has thus far consumed during its execution.

2. Rollback. If we preempt a resource from a process, what should be done with that
process? Clearly, it cannot continue with its normal execution; it is missing some needed
resource. We must roll back the process to some safe state and restart it from that state.
Since it is difficult to determine what a safe state is, the simplest solution is a total
rollback: abort the process and then restart it.

18 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

3. Starvation. How do we ensure that starvation will not occur? That is, how can we
guarantee that resources will not always be preempted from the same process?

19 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

MEMORY MANAGEMENT

Main Memory Management Strategies

Every program to be executed has to be executed must be in memory. The instruction
must be fetched from memory before it is executed.

In multi-tasking OS memory management is complex, because as processes are swapped
in and out of the CPU, their code and data must be swapped in and out of memory.

Bosie Hovrdmwrore

Main memory, cache and CPU registers in the processors are the only storage spaces
that CPU can access directly.

The program and data must be bought into the memory from the disk, for the process to
run. Each process has a separate memory space and must access only this range of legal
addresses. Protection of memory is required to ensure correct operation. This prevention
is provided by hardware implementation.

Two registers are used - a base register and a limit register. The base register holds the
smallest legal physical memory address; the limit register specifies the size of the range.
For example, The base register holds the smallest legal physical memory address; the
limit register specifies the size of the range. For example, if the base register holds
300040 and limit register is 120900, then the program can legally access all addresses
from 300040 through 420940 (inclusive).

0

operating
system

256000

process

300040 300040

base

process

420940 120900

limit

process

880000

1024000
Figure: A base and a limit-register define a logical-address space

The base and limit registers can be loaded only by the operating system, which uses a
special privileged instruction. Since privileged instructions can be executed only in
kernel mode only the operating system can load the base and limit registers.

20 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

base base + limit

address yes yes
CPU > <

no no

trap to operating system

monitor—addressing error memory

Figure: Hardware address protection with base and limit-registers

Address Binding

User programs typically refer to memory addresses with symbolic names. These symbolic
names must be mapped or bound to physical memory addresses.

Address binding of instructions to memory-addresses can happen at 3 different stages.

1. Compile Time - If it is known at compile time where a program will reside in physical

memory, then absolute code can be generated by the compiler, containing actual
physical addresses. However, if the load address changes at some later time, then the

program will have to be recompiled.

2. Load Time - If the location at which a program will be loaded is not known at compile
time, then the compiler must generate relocatable code, which references addresses

relative to the start of the program. If that starting address changes, then the program
must be reloaded but not recompiled.

3. Execution Time - If a program can be moved around in memory during the course of its

execution, then binding must be delayed until execution time.

21 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Quroe\\‘
program |
NG

compiler or 1 compile
assembler time

|
otheﬁ module
object |
modules

linkage
editor

¢/bléh load
time
Z loader
dynamicall
| loaded
in»lr)?r?ar\rr\;fy 1 execution
memory J m)"“”
image

\ system
Figure: Multistep processing of a user program

2
@
@
3

3
=
-

library

~ dynamic
linking

Logiucod Versus Physical Address Spoce

e The address generated by the CPU is a logical address, whereas the memory address
where programs are actually stored is a physical address.

e The set of all logical addresses used by a program composes the logical address space,
and the set of all corresponding physical addresses composes the physical address space.

e The run time mapping of logical to physical addresses is handled by the memory-
management unit (MMU).

One of the simplest is a modification of the base-register scheme.

The base register is termed a relocation register

The value in the relocation-register is added to every address generated by a
user-process at the time it is sent to memory.

The user-program deals with logical-addresses; it never sees the real physical-
addresses.

relocation
register

logical physical

address address
CPU @ memory

346 14346

MMU

Figure: Dynamic relocation using a relocation-register

22 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Dynomic Loading
e This can be used to obtain better memory-space utilization.
e A-routine is not loaded until it is called.

This works as follows:

1. Initially, all routines are kept on disk in a relocatable-load format.

2. Firstly, the main-program is loaded into memory and is executed.

3. When a main-program calls the routine, the main-program first checks to see whether the
routine has been loaded.

4. If routine has been not yet loaded, the loader is called to load desired routine into
memory.

5. Finally, control is passed to the newly loaded-routine.

Advantages:
1. Anunused routine is never loaded.
2. Useful when large amounts of code are needed to handle infrequently occurring cases.
3. Although the total program-size may be large, the portion that is used (and hence loaded)
may be much smaller.
4. Does not require special support from the OS.

Dynamic Linking and Shared Librories

e With static linking library modules get fully included in executable modules, wasting
both disk space and main memory usage, because every program that included a certain
routine from the library would have to have their own copy of that routine linked into
their executable code.

e With dynamic linking, however, only a stub is linked into the executable module,
containing references to the actual library module linked in at run time.

e The stub is a small piece of code used to locate the appropriate memory-resident
library-routine.

e This method saves disk space, because the library routines do not need to be fully
included in the executable modules, only the stubs.

e An added benefit of dynamically linked libraries (DLLs, also known as shared
libraries or shared objects on UNIX systems) involves easy upgrades and updates.

Shared libraries

e A library may be replaced by a new version, and all programs that reference the library
will automatically use the new one.

e Version info. is included in both program & library so that programs won't accidentally
execute incompatible versions.

23 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Swapping

e A process must be loaded into memory in order to execute.

e If there is not enough memory available to keep all running processes in memory at the
same time, then some processes that are not currently using the CPU may have their
memory swapped out to a fast local disk called the backing store.

e Swapping is the process of moving a process from memory to backing store and moving
another process from backing store to memory. Swapping is a very slow process
compared to other operations.

e A variant of swapping policy is used for priority-based scheduling algorithms. If a
higher-priority process arrives and wants service, the memory manager can swap out the
lower-priority process and then load and execute the higher-priority process. When the
higher-priority process finishes, the lower-priority process can be swapped back in and
continued. This variant of swapping is called roll out, roll in.

Swapping depends upon address-binding:
e If binding is done at load-time, then process cannot be easily moved to a different
location.
e If binding is done at execution-time, then a process can be swapped into a different
memory-space, because the physical-addresses are computed during execution-time.

Major part of swap-time is transfer-time; i.e. total transfer-time is directly proportional to the
amount of memory swapped.

Disadvantages:
1. Context-switch time is fairly high.
2. If we want to swap a process, we must be sure that it is completely idle.
Two solutions:
i) Never swap a process with pending 1/0.
i) Execute I/O operations only into OS buffers.

— T
AT B
7
operaling -
system
- 1 process P,
I swap ou i
%
~ : process P,
(2, 8wap in
user \\\M _,///‘
SR backing store

main memory

Figure: Swapping of two processes using a disk as a backing store

24 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Example:
Assume that the user process is 10 MB in size and the backing store is a standard hard disk with

a transfer rate of 40 MB per second.
The actual transfer of the 10-MB process to or from main memory takes
10000 KB/40000 KB per second = 1/4 second
= 250 milliseconds.
Assuming that no head seeks are necessary, and assuming an average latency of 8 milliseconds,
the swap time is 258 milliseconds. Since we must both swap out and swap in, the total swap
time is about 516 milliseconds.

Contiguous Memory Allocation

e The main memory must accommodate both the operating system and the various user
processes. Therefore we need to allocate the parts of the main memory in the most
efficient way possible.

e Memory is usually divided into 2 partitions: One for the resident OS. One for the user
processes.

e Each process is contained in a single contiguous section of memory.

1. Memory Mapping and Protecton

e Memory-protection means protecting OS from user-process and protecting user-
processes from one another.
e Memory-protection is done using
o Relocation-register: contains the value of the smallest physical-address.
o Limit-register: contains the range of logical-addresses.
e Each logical-address must be less than the limit-register.
e The MMU maps the logical-address dynamically by adding the value in the relocation-
register. This mapped-address is sent to memory
e When the CPU scheduler selects a process for execution, the dispatcher loads the
relocation and limit-registers with the correct values.
e Because every address generated by the CPU is checked against these registers, we can
protect the OS from the running-process.
e The relocation-register scheme provides an effective way to allow the OS size to change
dynamically.
e Transient OS code: Code that comes & goes as needed to save memory-space and
overhead for unnecessary swapping.

25 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

limit relocation
register register

logical physical
address yes address

CPU < >+
L

no

h 4

memory

trap: addressing error

Figure: Hardware support for relocation and limit-registers

2. Memory Allotation

Two types of memory partitioning are:
1. Fixed-sized partitioning
2. Variable-sized partitioning

1. Fixed-sized Partitioning

e The memory is divided into fixed-sized partitions.
e Each partition may contain exactly one process.
e The degree of multiprogramming is bound by the number of partitions.

e When a partition is free, a process is selected from the input queue and loaded into the
free partition.

e When the process terminates, the partition becomes available for another process.

2. Variable-sized Partitioning

e The OS keeps a table indicating which parts of memory are available and which parts are
occupied.

e A hole is a block of available memory. Normally, memory contains a set of holes of
various sizes.

¢ Initially, all memory is available for user-processes and considered one large hole.
e When a process arrives, the process is allocated memory from a large hole.

e If we find the hole, we allocate only as much memory as is needed and keep the
remaining memory available to satisfy future requests.

26 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Three strategies used to select a free hole from the set of available holes:

First Fit: Allocate the first hole that is big enough. Searching can start either at the

beginning of the set of holes or at the location where the previous first-fit search ended.

Best Fit: Allocate the smallest hole that is big enough. We must search the entire list,
unless the list is ordered by size. This strategy produces the smallest leftover hole.

Worst Fit: Allocate the largest hole. Again, we must search the entire list, unless it is
sorted by size. This strategy produces the largest leftover hole.

First-fit and best fit are better than worst fit in terms of decreasing time and storage utilization.

3. Fragmentotion

Two types of memory fragmentation:

1.
2.

Internal fragmentation
External fragmentation

1. Internal Fragmentation

The general approach is to break the physical-memory into fixed-sized blocks and
allocate memory in units based on block size.
The allocated-memory to a process may be slightly larger than the requested-memory.

The difference between requested-memory and allocated-memory is called internal
fragmentation i.e. Unused memory that is internal to a partition.

2. External Fragmentation

External fragmentation occurs when there is enough total memory-space to satisfy a
request but the available-spaces are not contiguous. (i.e. storage is fragmented into a
large number of small holes).

Both the first-fit and best-fit strategies for memory-allocation suffer from external
fragmentation.

Statistical analysis of first-fit reveals that given N allocated blocks, another 0.5 N blocks
will be lost to fragmentation. This property is known as the 50-percent rule.

Two solutions to external fragmentation:

Compaction: The goal is to shuffle the memory-contents to place all free memory
together in one large hole. Compaction is possible only if relocation is dynamic and done
at execution-time

Permit the logical-address space of the processes to be non-contiguous. This allows a
process to be allocated physical-memory wherever such memory is available. Two
techniques achieve this solution: 1) Paging and 2) Segmentation.

27 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Paging

Paging is a memory-management scheme.

This permits the physical-address space of a process to be non-contiguous.

This also solves the considerable problem of fitting memory-chunks of varying sizes
onto the backing-store.

Traditionally: Support for paging has been handled by hardware.

Recent designs: The hardware & OS are closely integrated.

Basie Method of Paging

The basic method for implementing paging involves breaking physical memory into
fixed-sized blocks called frames and breaking logical memory into blocks of the same
size called pages.

When a process is to be executed, its pages are loaded into any available memory frames
from the backing store.

The backing store is divided into fixed-sized blocks that are of the same size as the
memory frames.

The hardware support for paging is illustrated in Figure 1.

logical physical
address address f0000 ... 0000

oPu] d
p{

1411 ... 1111

f

physical
memory

page table

Figure 1: Paging hardware

Address generated by CPU is divided into 2 parts (Figure 2):
1. Page-number (p) is used as an index to the page-table. The page-table contains the
base-address of each page in physical-memory.
2. Offset (d) is combined with the base-address to define the physical-address. This
physical-address is sent to the memory-unit.
The page table maps the page number to a frame number, to yield a physical address
The page table maps the page number to a frame number, to yield a physical address

which also has two parts: The frame number and the offset within that frame.

The number of bits in the frame number determines how many frames the system can
address, and the number of bits in the offset determines the size of each frame.

28 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

The paging model of memory is shown in Figure 2.

frame

number
page O 0}
page 1 1| page O
page 2 2
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

Figure 2: Paging model of logical and physical memory.

The page size (like the frame size) is defined by the hardware.

The size of a page is typically a power of 2, varying between 512 bytes and 16 MB per
page, depending on the computer architecture.

The selection of a power of 2 as a page size makes the translation of a logical address
into a page number and page offset.

If the size of logical address space is 2™ and a page size is 2" addressing units (bytes or
words), then the high-order m — n bits of a logical address designate the page number,
and the n low-order bits designate the page offset.

Thus, the logical address is as follows:

page number | page offset
p d

m -n n

When a process requests memory (e.g. when its code is loaded in from disk), free frames
are allocated from a free-frame list, and inserted into that process's page table.

Processes are blocked from accessing anyone else's memory because all of their memory
requests are mapped through their page table. There is no way for them to generate an
address that maps into any other process's memory space.

The operating system must keep track of each individual process's page table, updating it
whenever the process's pages get moved in and out of memory, and applying the correct
page table when processing system calls for a particular process. This all increases the
overhead involved when swapping processes in and out of the CPU.

29 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

free-frame list free-frame list
14 15
13 13 13 |page 1
18
20 14 14 |page 0
15
ATy 15 R 15
e o R
page O 16 page O 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
new process 18 new process 18 |page 2
. <. s>
19 0 19
1
20 2 20 [page 3
3
21 new-process page table 21

(a) (b)

Figure: Free frames (a) before allocation and (b) after allocation.

Howdmwore Swpport

Translation L ook aside Buffer

A special, small, fast lookup hardware cache, called a translation look-aside buffer
(TLB).

Each entry in the TLB consists of two parts: a key (or tag) and a value.

When the associative memory is presented with an item, the item is compared with all
keys simultaneously. If the item is found, the corresponding value field is returned. The
search is fast; the hardware, however, is expensive. Typically, the number of entries in a
TLB is small, often numbering between 64 and 1,024.

The TLB contains only a few of the page-table entries.

Working:

When a logical-address is generated by the CPU, its page-number is presented to the
TLB.

If the page-number is found (TLB hit), its frame-number is immediately available and
used to access memory

If page-number is not in TLB (TLB miss), a memory-reference to page table must be
made. The obtained frame-number can be used to access memory (Figure 1)

30 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

logical
address

CPU P

page frame
number number

TLB hit

physical
I address

TLB

p {
TLB miss

f
— physical
memory

page table

Figure 1: Paging hardware with TLB

e In addition, we add the page-number and frame-number to the TLB, so that they will be
found quickly on the next reference.

o If the TLB is already full of entries, the OS must select one for replacement.

e Percentage of times that a particular page-number is found in the TLB is called hit ratio.

Advantage: Search operation is fast.
Disadvantage: Hardware is expensive.

e Some TLBs have wired down entries that can't be removed.
e Some TLBs store ASID (address-space identifier) in each entry of the TLB that uniquely
identify each process and provide address space protection for that process.

Protection

e Memory-protection is achieved by protection-bits for each frame.

e The protection-bits are kept in the page-table.

¢ One protection-bit can define a page to be read-write or read-only.

e Every reference to memory goes through the page-table to find the correct frame-
number.

o Firstly, the physical-address is computed. At the same time, the protection-bit is checked
to verify that no writes are being made to a read-only page.

e An attempt to write to a read-only page causes a hardware-trap to the OS (or memory
protection violation).

31 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

Valid Invalid Bit
e This bit is attached to each entry in the page-table.
e Valid bit: “valid” indicates that the associated page is in the process’ logical address
space, and is thus a legal page
e Invalid bit: “invalid” indicates that the page is not in the process’ logical address space

Illegal addresses are trapped by use of valid-invalid bit.
The OS sets this bit for each page to allow or disallow access to the page.

0
1
2| page O
00000 frame number valid-invalid bit
page 0 \ / 3| page 1
o}l 2 |V
page 1 1 B3R 4| page 2
2|4 |v
age 2 5
- 3 [FZaRV;
page 3 48|V 6
519 |v
page 4 6lo]i 7| page 3
7|0 i
10468 | page 5 ' 8| page 4
12,287 page table
9| page 5
page n

Figure: Valid (v) or invalid (i) bit in a page-table

Shared Pages

¢ An advantage of paging is the possibility of sharing common code.

e Re-entrant code (Pure Code) is non-self-modifying code, it never changes during
execution.

e Two or more processes can execute the same code at the same time.

e Each process has its own copy of registers and data-storage to hold the data for the
process's execution.

e The data for 2 different processes will be different.
e Only one copy of the editor need be kept in physical-memory (Figure 5.12).

e Each user's page-table maps onto the same physical copy of the editor, but data pages are
mapped onto different frames.

Disadvantage:
Systems that use inverted page-tables have difficulty implementing shared-memory.

32 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

ed1 0

ed?2 1| datai

ed 3 2| data3

data 1 page table 3| edt
Tor®, ed 1

process P, 4 ed 2

ed 2

ed 3
6 ed3

data 2 page table
for PZ 7 data 2

ed1

process P,

ed?2

ed 3

data 3 page table
for Py 11

process Py

Figure: Sharing of code in a paging environment

Structure of the Page Table

The most common techniques for structuring the page table:
1. Hierarchical Paging
2. Hashed Page-tables
3. Inverted Page-tables

1. Hierarchical Paging
e Problem: Most computers support a large logical-address space (232 to 264). In these

systems, the page-table itself becomes excessively large.
e Solution: Divide the page-table into smaller pieces.

Two Level Paging Algorithm:
e The page-table itself is also paged.

e This is also known as a forward-mapped page-table because address translation works
from the outer page-table inwards.

33 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

L ipe g |
L i]
. .
/ . 100 =
500 N
\ ~ .
- A <
[100 500
- -
. . .
.
208NN —— | .
e 708
\ = <
outer page [929 .
tab’lae g . N 200 =
900 />< :
page of 929
page table

page table L]
memory

Figure: A two-level page-table scheme

Eor example:
Consider the system with a 32-bit logical-address space and a page-size of 4 KB.

A logical-address is divided into
— 20-bit page-number and
— 12-bit page-offset.
Since the page-table is paged, the page-number is further divided into
— 10-bit page-number and
— 10-bit page-offset.

Thus, a logical-address is as follows:
page number page offset

P P, d
12 10 10

e where p1 is an index into the outer page table, and p: is the displacement within the
page of the inner page table

The address-translation method for this architecture is shown in below figure. Because address
translation works from the outer page table inward, this scheme is also known as a forward-
mapped page table.

logical address

P [Pe | d |

o

3 P

p{ i

outer page d {

table

page of
page table

Figure: Address translation for a two-level 32-bit paging architecture

34 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

2. Hashed Page Tables
e This approach is used for handling address spaces larger than 32 bits.
e The hash-value is the virtual page-number.

e Each entry in the hash-table contains a linked-list of elements that hash to the same
location (to handle collisions).

e Each element consists of 3 fields:
1. Virtual page-number
2. Value of the mapped page-frame and
3. Pointer to the next element in the linked-list.

The algorithm works as follows:
e The virtual page-number is hashed into the hash-table.
o The virtual page-number is compared with the first element in the linked-list.

e |If there is a match, the corresponding page-frame (field 2) is used to form the desired
physical-address.

e |If there is no match, subsequent entries in the linked-list are searched for a matching
virtual page-number.

physical
logical address

address
R ST

A

physical
memory

—»Iqlslrlhlplrlu

hash table

Figure: Hashed page-table

3. Inverted Page Tables
e Has one entry for each real page of memory.

e Each entry consists of virtual-address of the page stored in that real memory-location
and information about the process that owns the page.

e Each virtual-address consists of a triplet <process-id, page-number, offset>.
e Each inverted page-table entry is a pair <process-id, page-number>

35 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

logical physical

ialddress [I:Ii_,m physical
CPU —>|p|d| p | d | ‘ik memory

search l }i

pid | p

page table
Figure: Inverted page-table

The algorithm works as follows:
1. When a memory-reference occurs, part of the virtual-address, consisting of <process-id,
page-number>, is presented to the memory subsystem.
2. The inverted page-table is then searched for a match.
If a match is found, at entry i-then the physical-address <i, offset> is generated.
4. 1f no match is found, then an illegal address access has been attempted.

w

Advantage:
1. Decreases memory needed to store each page-table

Disadvantages:
1. Increases amount of time needed to search table when a page reference occurs.
2. Difficulty implementing shared-memory

Segmentation

Bosic Method of Segmentotion

e This is a memory-management scheme that supports user-view of memory (Figure 1).

e Alogical-address space is a collection of segments.

e Each segment has a name and a length.

e The addresses specify both segment-name and offset within the segment.

e Normally, the user-program is compiled, and the compiler automatically constructs
segments reflecting the input program.

e For ex: The code, Global variables, The heap, from which memory is allocated, The
stacks used by each thread, The standard C library

36 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

subroutina

table

symbol ‘

Sagrt J
main
program

logical address
Figure: Programmer’s view of a program

Hardware support for Segmentation
e Segment-table maps 2 dimensional user-defined addresses into one-dimensional physical
addresses.
In the segment-table, each entry has following 2 fields:
1. Segment-base contains starting physical-address where the segment resides in
memory.
2. Segment-limit specifies the length of the segment (Figure 2).
e Alogical-address consists of 2 parts:
1. Segment-number(s) is used as an index to the segment-table
2. Offset(d) must be between 0 and the segment-limit.
e |f offset is not between O & segment-limit, then we trap to the OS(logical-addressing
attempt beyond end of segment).
o |f offset is legal, then it is added to the segment-base to produce the physical-memory

address.
=
———— S+
— limit |pase |—
segment
7 table
CPU || S
Y v
(= (D
no
trap: addressing error physical memory

Figure: Segmentation hardware

37 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

10.

ok~ b

QUESTION BANK
DEADLOCKS

What are deadlocks? What are its characteristics? Explain the necessary conditions for
its occurrence.
Explain the process of recovery from deadlock.
Describe RAG:

) With deadlock

i) With a cycle but no deadlock
What is Resource Allocation Graph (RAG)? Explain how RAG is very useful in
describing deadly embrace (dead lock) by considering your own example.
With the help of a system model, explain a deadlock and explain the necessary
conditions that must hold simultaneously in a system for a deadlock to occur.
Explain how deadlock can be prevented by considering four necessary conditions cannot
hold.
Using Banker's algorithm determines whether the system is in a safe state.
How is a system recovered from deadlock? Explain the different methods used to
recover from deadlock.
Explain deadlock detection with algorithm and example
Define the terms: safe state and safe sequence. Give an algorithm to find whether or not
a systemis in a safe state.

MEMORY MANAGEMENT

Explain the multistep processing of a user program with a neat block diagram.
Distinguish between internal and external fragmentation.
Explain segmentation with an example.
Explain with a diagram, how TLB is used to solve the problem of simple paging scheme.
With a supporting paging hardware, explain in detail concept of paging with an example
for a 32-byte memory with 4-type pages with a process being 16-bytes. How many bits
are reserved for page number and page offset in the logical address. Suppose the logical
address is 5, calculate the corresponding physical address, after populating memory and
page table.
What are the draw backs of contiguous memory allocation?
Consider a paging system with the page table stored in memory.
I. if a memory reference takes 200 nano seconds, how long does a paged memory
reference take?
ii. if we add associative register and 75 percentage of all page table references are
found in the associative registers, what is the effective memory access time?
(Assume that finding a page table entry in the associative memory/registers takes

38 | Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

zero time, if the entry is found).
8. Distinguish between:
I. Logical address space and physical address space.
ii. Internal fragmentation and external fragmentation.
iii. Paging and segmentation.
9. Explain with the help of supporting hardware diagram how the TLB improves the
performance of a demand paging system.
10. Explain the concept of forward mapped page table.
11. What is fragmentation? Explain two types of memory fragmentation
12. What is swapping? Explain in detail.
13. What do you mean by address binding? Explain with the necessary steps, the binding of
instructions and data to memory addresses.

39 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

[a—

W

University Questions

June / July 2018

Consider the following snapshot of a system

Allocation Max Available
A-pociHaryBaC|A B C
Bl 0 0 Q2PO-0.4(1 0 2
K100 2 w4
Red 1 VRS54 131
Pl @3 2(8 42
Pibr ka1 5 7

Find the need matrix and calculate safe sequence using Banker’s algorithm. Mention the
above system 's safe or not safe. (08 Marks)

What are the necessary conditions for deadlock? Explain different methods to recover from
deadlock. (08 Marks)
What is paging? Explain paging hardware with translation look-aside buffer. (06 Marks)
Explain the structure of page table with respect to hierarchical paging. (06 Marks)

Given the 5 memory partitions 100 KB, 500 KB, 200 KB, 300 KB and 600 KB. how each of
the first fit. best fit and worst fit algorithms place processes of 212 KB, 417 KB, 112KB and
76KB size. Which algorithm makes efficient use of memory”? (04 Marks)

Dec. 2018 / Jan 2019

Define deadlock. Write short notes on 4 necessary conditions that arise deadlocks.
Assume that there are 5 processes PO through P4 and 4 types of resources. At time To we
have the following state :

Beicson Allocation Max Available
A(B|C/IDFA94B|C|DJA|B|C}|D

P lolof1]2Jolof1]2]1[5}2}0

P, 100011171510

P, 13 WS TAl2]13]516

P; 0/6ul3%2]0]6]5]2

P, O4u0%.1 | 4] 0[6[5]|6

Apply Banker's algorithm to answer the following :
i) What is the content.of need matrix?
ii) Is the system in a safe state?
ii) If a request from aprocess P1(0, 4, 2, 0) arrives, can it be granted?

Write short notes on :

i) Extemal and internal fragmentation

ii) Dynamic loading and linking.

Analyze the problem in simple paging technique and show how TLB is used to solve the
problem.

40 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Operating Systems | BCS303

June / July 2019

Determine whether the following system is in safe state by using Banker’s algorithm.

Process | Allocation | Maximum | Available
A B CsAAB C|A B C
Po G- 1 "0 S 33 3 2
P, 2 B13 2 2
P> a2 19 0- 2
Ps ey 1122 2
P4 &0 0i4- 3 3
If a request for Pyarrives for (1 0 2), can the request be granted immediately? (09 Marks)
Discuss the various approaches used for deadlock recovery. (07 Marks)

[llustrate with example, the internal and external fragmentation problem encountered in

continuous memory allocation. (07 Marks)
Explain the structure of page table. (09 Marks)

41 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

	COURSE NAME: OPERATING SYSTEMS COURSE CODE: BCS303
	MODULE: 3
	 WEB RESOURCES:
	DEADLOCKS
	SYSTEM MODEL
	DEADLOCK CHARACTERIZATION
	If the graph does contain a cycle, then a deadlock may exist.

	METHODS FOR HANDLING DEADLOCKS
	DEADLOACK PREVENTION
	Mutual Exclusion
	Hold and Wait
	The two main disadvantages of these protocols:
	No Preemption
	Circular Wait

	DEADLOCK AVOIDANCE
	Safe State
	Resource-Allocation-Graph Algorithm

	Banker's Algorithm
	Safety Algorithm
	Resource-Request Algorithm
	Example

	DEADLOCK DETECTION
	Single Instance of Each Resource Type
	Several Instances of a Resource Type
	Algorithm:
	Algorithm requires an order of O(m x n2) operations to detect whether the system is in deadlocked state
	Detection-Algorithm Usage

	RECOVERY FROM DEADLOCK
	Process Termination
	Resource Preemption

	MEMORY MANAGEMENT
	Main Memory Management Strategies
	Shared libraries

	Swapping
	Example:

	Contiguous Memory Allocation
	Paging
	Translation Look aside Buffer
	Valid Invalid Bit
	Disadvantage:

	Structure of the Page Table
	1. Hierarchical Paging
	For example:
	2. Hashed Page Tables
	3. Inverted Page Tables

	Segmentation

	QUESTION BANK

